9/20/16

Lecture 4

Working with Obijects:
Variables, Containment, and Association

104

This Lecture:

e Storing values in variables
e Methods that take in objects as parameters

e Containment and association relationships (how
objects know about other objects inthe same program)

e Packages (collections of related classes) and how to

import classes from other packages and use them in
your code

ke a0 Qi L 2GR0 JG 294

Review: Methods
e Call methods: send messages to an object
andyBot.turnRight();

o Define methods: give a class specific capabilities
public void turnLeft() {

3/94

et van 0o 2 2016080 16

Review: Constructors and Instances
e Declare a constructor (amethod called whenever an
object is “born”)
public Calculator() {

}

e Create an instance of a class with the new keyword
new Calculator();

4/94
et van 0 - 016080 15

Review: Parameters and Arguments

e \Write methods that take in parameters (input) and have
return values (output), e.g., this Calculator’'s method
public int add(int x, int y) {

//x, y are dummy (symbolic) variables
return X + y;

}

e Call such methods on instances of a class by providing
arguments (actual values for symbolic parameters)
myCalculator.add (5, 8);

o O 20160800 16 54

Review:Classes

e As we've mentioned, classes are just blueprints

e Aclass gives us a basic definition of something we want
to model

e |t tells us what the properties and capabilities of that kind
of thing are (we'll deal with properties in this lecture)

e Can create a class called pretty much anything you want,
and invent any methods and properties you choose for it!

ot O 20160800 16 694

Review: Instantiation

e Instantiation means
building an object from
its class “blueprint”

o EX: new Robot();
creates an instance of
Robot

The Robot
class

public class Dog {

Review: Constructors
public Dog() {
e A constructor is a
method that is called to ¥
create a new object

e Let's define one for the
Dog class

public voidbark(int nunTimes) {
// code for barking goes here

public voideat() {

e This calls the Robot e e All Dogs know how to // code for eating goes here
class’s constructor: a \J' - % bark, eat, and wag their ¥
Special kind of method <4 instance tails public voidwagTail() {
// code for wagging tail goes here
i |
— 704 I zmls 8/94
Review: Constructors Pt c1as post Variables

e Constructors do not
specify a return type

o Name of constructor
must exactly match
name of class

e Now we can instantiate
a Dog in some method:

new Dog();

public Dog() {

}

public voidbark(int nunTimes) {
// code for barking goes here

¥

public voideat() {
// code for eatinggoes here

}

public voidwagTail() {
// code for wagging tail goes here

¥

¥ 94

v 6

e Once we create a Dog, we want to be able to give it
commands by calling methods on it!

e To do this, we need to name our Dog
e Can name an object by storing itin a variable
Dog django = new Dog();
https: //www. youtube. com/watch?v=plpsfvdcHeo

e Avariable stores information

e |n this case, django is the variable, and it stores a
newly created instance of Dog somewhere in memory
1094

et van 0 - 016080 15

Syntax: Variable Declaration and Assignment
e To declare and assign avariable, thereby initializing it ina single
statement is: Dog django = new Dog();
<type> <name> =

o Note: type of value must match declared type on left

e Note that we can reassign as many times as we like (example soon)

<value>;

1104

Variables

django

Dog django = new Dog();

e The “=" operator assigns
the instance of Dog that we
created to the variable
django. Wesay “django
gets a new Dog”

e Now we can call methods
on our Dog using its new
name (django), e.g.,
django.bark() ;

1204

9/20/16

Assignmentvs. Equality
In Java: In Algebra:
price= price + 10;

* price = price + 10 is a

logical contradiction
* Means “add 10 to the

current value of price
and assign that to
price"

Variables Store Information: Values vs. References

. . . " int favoriteNumber = 9;
e A variable stores information as either:

9

o avalue of aprimitive (aka base) type (like int or float)

o ora reference to aninstance (like aninstance of Dog) of an
arbitrary type stored elsewhere in memory — we symbolize a
reference with an arrow

Dog django = newDog();
[django

e Think of the variable like a box; storing a value or

reference is like putting something into the box |

e Primitives have a predictable memory size, while arbitrary
objects vary in size, hence Java simplifies its memory
management by having a fixed size reference to an
instance elsewhere in memory

o ‘“onelevel of indirectness”

o 1394 [
Clicker Question Example: Instantiation (1/2)
Given this code, fill in the blanks: public class Petshop { e Let's call the testDjango()
method within the
int x = 5; public Petshop() { constructor of the PetShop
Calculator myCalc= new Calculator(); this .testdjango(); class
) ¥ e Whenever someone
Variable x stores a , and myCalc stores a s . instantiates aPetShop, it in
- p“bhcd void testOiang() { tumn calls testDjango ()
A. value, value z;zn;:_li)k;;fwuogo’ which in tum instantiates a
B. value, reference django.eat(); Dog
C. reference, vdue django.wagTail(); e Then it tells the Dog to baik,
D. reference, reference) eat, and wag s tail
15/94 ¥ 16/94

et van 0o 2 2016080 16

et van 0 - 016080 15

Example: Instantiation (2/2)

e Another example: can instantiate a a
MathStudent and then call that instance
to perform a simple, fixed, calculation

e First, create a new Calculator and
store it in variable named myCalc

public class MathStudent {

public void performCalculation() {
CalculatormyClc = new Calculator();

;nt answer = ﬂyyCinIC-aﬂi(Z,'G); e Next, tell myCalc to add 2 to 6 and store
N ystem.out.println(ansier); result in variable named answer
} e Finally, use System.out.println to

print value of answer to the console!

1704

Objects as Parameters (1/4)

. . public class DogGroomer {
o Methods can take inobjects as
parameters public DogGroamer() {

e The DogGroomer classhasa)
method groom
e groom methodneedsto know ~ Public voidgrom(ogshaggybee) {

which Dog to groom)

}

1804

9/20/16

Objects as Parameters (2/4)

e DogGroomer’s groom method takes

in a single parameter—- a Dog

e Always specify type, then name of

parameter

e Here, Dog is type and “shaggyDog’

is name (aka dummy/symbdic
parameter) we’ve chosen —
whatever reference toa dog is

passed inis called shaggyDog in

this method

e Note that in algebra, we only have

numeric types, so noneed to

public class DogGroomer {
public DogGroamer() {
i type name
public void groah}og shagfcg) {

}
}

Objects as Parameters (3/4)

e How to call the groom
method?

e Do this in the PetShop
helper method
testGroomer () }

public class PetShop {

public PetShop() {
this.testGroomer();

public void testGroomer() {
Dog django = newDog();
DogGroomer groomer = new DogGroomer() ;
groomer . groom(django);

e PetShop's call to
testGroomer()
instantiates a Dog and a
DogGroomer, then tells the
DogGroomer to groom the

10 Do ¥
“declare” type explicitly g
§ 1994 . 2094
« 0. Elsewhere in the program, some
method instantiates a PetShop public class App { . Petshop petSmart = new Petshop();
(thereby calling PetShop's public App() { + Memory (system memory, not disk PP P03
A 0.Petshop petsmart = new Petshop(); or other peripheral devices) is the ;
constructor). Then: N hardware in which computers store public class PetShop {
1. The PetShopin tu lles th) i i
tectoroomer() holper method, gmﬁgg{], both temporary and public Petshop() {
which instantates aDogand stores PoLic class Petsihop { this. testGroomen();
areference fo it inthe variable P)_(0 { . e . }
e this. testGroomer(); « Think of memory as a list of slots;
Jjange each slot holds ‘information (e.g., a . .
2. Next, it instantiates aDogGroomer local int variable, or a reference to public void testsroomer() {
and stores a reference to it in the public void testGroomer() { an instance of a class) Dog django = newDog();
variable groomer Dog django = new Dog(); DogGroomer groomer = new DogGroomer() ;
& ; Dog6 DogG 0] 5 s &
ogGroorer groomer = new DogGroomer();) . .
3. The groommethod is called on 3 grooner groon(django); « Here, two references are stored in groomer.. groom(djargo);
groomer,passingin django as an memory: one to a Dog instance, ¥
argument, the groomer will think of } and one to a DogGroomer instance)
it as shaggyDog, a synonym i 2104 2204

et van 0o 2 2016080 16

et van 0 - 016080 15

Objects as Parameters: Underthe Hood (1/6)

Somewhere in memory ...

Objects as Parameters: Underthe Hood (2/6)

Dog django = new Dog();

Somewhere in memoty ...

2394

When we instantiate a Dog, he'sstoredsomewherein memory. Our Pet Shopwill use the
name django torefer to M\Spamculigggﬁva;m 5paﬁcl.larlocaion in memory. 24/94

9/20/16

Objects as Parameters:

put class PetShop

publi oomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();

o

Underthe Hood (3/6)

put class DogGroome

Somewhere in memory ...

"

The same goesfor theDogGroomer—westore a particularDogGroome rsomewhere in
memory . Our PetShopknowsthis DogGroomer bythe rame groamer. 2594

Objects as Parameters: Underthe Hood (4/6)

public void

Dog_django Dog();
DogGroomer groomer = new DogGroomer();

groomer,. groon(django) ;

Somewhere in memory ...

=
4 8

.

We callthe groommethad onourDogGroomer, groomer. Weneed fo tellherwhichDogto groom
(since the groommethodtakes ina parameter ofty pe Dog). Wetell herto groam django. 26/94

Objects as Parameters:

public class PetShop

ublic void testGroomer()
Dog django = new Dog();
DogGroomer groorer = new DogGroomer () ;
grooner.groon(django) ;

Somewhere i

Underthe Hood (5/6)

public void groom(Dog shaggyDog) {

de that grooms g

When we pass indjangoasan argumentto the groan methad, weretelling the groan
method abouthim. When groomexeautes, itseesthatithas beenpassedthatparticular Dog.27/94

v

Objects as Parameters: Underthe Hood (6/6)

ublic void testGroone {
Dog django = new Dog();

DogGroomer groomer = new DogGroomer();
groomer. groon(django) ;

Somewhere i

ublic

public void groom(Dog

code that grooms s here!

N
P

S

The groom methad deesn’tredly care whichDogit's told to groom—no malter whatanather
objects name forthe Dogis, graomis gang to knowitby the name shaggybog. 28/94

Variable Reassignment(1/2)

e After giving a variable an initial
value, we can reassign it (make it
refer to a different object)

e What if we wanted our
DogGroomer to groom two different
Dogs when the PetShop opened?

e Could re-use the variable django
to first point to one Dog, then
another!

public class PetShop {

/* This is the constructor! */
public PetsShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = newDog();
DogGroomer groomer = new DogGroomer() ;
groomer.groom(django);

¥

2994

Variable Reassignment (2/2)

public class PetShop {

e First, instantiate another Dog, and
reassign variable django to point to it

e Now django no longer refers to the
first Dog instance we created, which
has already been groomed

o We then tell groomer to groom the
newer Dog

/* This is the constructor!
public Petshop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = newDog();
DogGroomer groomer = new DogGroomer() ;
groomer.groom(django);
django = new Dog(); // reassign django
groomer.groom(django);

3094

9/20/16

Variable Reassignment: Underthe Hood (1/5)

Variable Reassignment: Underthe Hood (2/5)

public class PetShop

This is the constructor!

public void testGroomer() {
Dog django = new Dog();
DogG

roomer = new DogGroomer();

Variable Reassignment: Underthe Hood (3/5)

public class PetShoj

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
grogner.groom(django) ;
d e o

Variable Reassignment: Underthe Hood (4/5)

public class PetShop

This he constructor!
public

this . testGroomer();

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groon(django) ;
djangoaz_new Dog(); //old ref garbage collecte

groomer . gromjar

|

™1

e v O

Variable Reassignment: Underthe Hood (5/5)

public class PetShop {

structor!

blic void testGroomer() {
’ Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer . groom(django) ;
django = new Dog();//old ref garbage collected
groomer.groom(django) ;

(L)

3594

Clicker Question

What is the correct value of (a+b) afterthe
following code is executed?

int a = 3;
int b = 2;
a=>b+ 2;
b=a+1;

oo w>
O~NO O

36/94

9/20/16

Local Variables (1/2)

public class PetShop {

e All variables we've seen so
far have been local
variables: variables declared
within a method }

e Problem: the scope dfalocd | up1ic voidtestsioonen
variable (whereit is known Dog djangd newD
and can be accessed) is
limited toits own method—it
cannot be accessed from
anywhere else

public Petshop() {
this.testGroomer(); local variables

H

DogGroomer groomef = new DogGroomer() ;
groomer . groom(django);

django = new Dog();
groomer.groom(django);

Local Variables (2/2)

public class PetShop {

e We created groomerand
django in our PetShop’s
helper method, butas far as
the rest of theclassis
concemed, they don'texist public void Koo

e Once the methaod is executed, bog djang®= newD
they’re gone :(DogGroomer groomef = n'ew DogGroomer() ;
groomer. groom(django);
e “Garbage Collecton” - stay tuned django = new Dog();
groomer.groom(django);

public Petshop() {
this.testGroomer(); local variables
}

H

o the sameis true of method ¥ ¥
parameters } }
s Qe e 3794 A i o 2y ie 38194
Accessing Local Variables Introducing... Instance Variables!
public class PetShop {
« If you try to access alocal . .
. A ™. private DogGroomer _groomer;
variable outside of it's] : .
method, you'll receive a R . IF_’ocaLvantabIes arerj”t1 alvl\;ays what we V\éant. W(ta dfllke elvery
“cannot find symbol” iremer e ogrocner 03 a:ﬁﬁeoppetosﬁgm:xvivéts a DogGroomer who exists foras long
compilation error. j 08 eneo = new o0 P
e That way, as long as the PetShop is in business, we’ll have
o . our DogGroomer on hand
Petshop .java :13: error: cannot find symbol public vold Exems_enja”go() t
d3ang o.pla yCat ch();)“33"@"’1”““"0" e We can accomplish this by storing the DogGroomer in an
symbo 1: va riable dj ango instance variable
locat ion: class Pet Shop }
3904 4094

et van 0o 2 2016080 16

et van 0 - 016080 15

What's an Instance Variable?

e Aninstance variable models a property that all instances of a
class have

o its value can differ from instance to instance

e |Instance variables are declared within a class, not within a single
method, and are accessible from anywhere within the class —its
scope is the entire class

e Instance variables and local variables are identical in terms of
what they can store—either can store a base type (like an int)
or a reference to an object (instance of some other class)

4194

Modeling Properties with Instance Variables (1/2)

e Methods model the capabilities of a
class

e Al instances of same class have
exact same methods (capabilities)
and the same properties

e BUT: the potentially differing values
of those properties can differentiate a
given instance from other instances of
the same class

e We use instance variables to model
these properties and their values
(e.g., the robot’s size, position,
orientation, color, ...)

42194

9/20/16

Modeling Properties with Instance Variables (2/2)

o Allinstances of a class have the same
properties, but the values of these properties

When should | define an instance variable?

e In general, variables that fall into one of these three
categories should be instance variables rather than local

variables:

will differ

e All CS15Students might have property
“height”

o for one student, the value of “height’is 52".

For another, its 6'4”

e The CS15Student class would have an
instance variable to represent height

o valuestored in this instance variable would
differ from instance to instance

43004

o attributes: descriptors of an object, e.g., color, height, age,...

o components: “parts” of an object. If you are modeling a car, its engine
and doors should be instance variables
o associations: things that are not part of an object, but that the object
needs to know about. For example, the instructor needs to know about
his/her TAs (more on this soon)
e All methods in a class can access all of its properties, to use
them and/or to change them

44094

Instance Variables (1/4)

o We've modified PetShop example to
make our DogGroomer an instance
variable

e Split up declaration and assignment of
instance variable:

o declare instance varisbleatthe top ofthe
class,to notify Java

o initialize the instance vaiablebyassiging a
value fo itin the constructor

o purpose ofconstructoris to initialize all
instance varablessothe instance has avalid
initial “state” atits “birth”

o stateis the setofall valuesfor dl propetties—
local variablesdon’thdd properties- they ae
“temporaries’

public class Petshop { declaration

private DogGroomer _groomer;

public PetShop() { assignment
_groomer = newDog’mmar();

this.testGroomer();

}

public void testGroomer() {
Dog django = newDog();//local var
_groomer.groom(django) ;

¥

4594

et van 0o 2 2016080 16

Instance Variables (2/4)

access modifier

public class PetS

DogGroomer _groomer ;

o Note that we include the keyword
private in declaration ofour
instance variable

public Petshop() {
_groomer = newDogGroomer() ;
this.testGroomer();
e private isanaccess madifier, just }
like public, whichwe've been using

in our method declarations

public void testGroomer() {
Dog django = newDog();//local var
_groomer.groom(django) ;

¥

46/94

et van 0 - 016080 15

Instance Variables (3/4)

e If declared as private, the method
orinstancevariable canonly be
accessed inside the class

e |f declared as public,can be
accessed fromanywhere

e In CS15, you'll primarily declare
instance variables as private

e Note that local variables don’thave
access modifier- they always have
the same scope (their own method)

access modifier

public class PetShop

DogGroomer _groomer ;

public PetShop() {
_groomer = newDogGroomer() ;
this.testGroomer();

¥

public void testGroomer() {
Dog django = newDog();//local var
_groomer.groom(django) ;

}

47194

Instance Variables (4/4)

e CS15instancevaiablerules: public class PetShop {

o start instance variable names with
an underscore to easily distinguish
them from local variables

private DogGroomer _groomer;

public PetShop() {
_groomer = newDogGroomer () ;
this.testGroomer();

}

o make all instance variables private
so they can only be accessed from
within their own class!

public void testGroomer() {

Dog django = newDog();//local var
_groomer .groom(django) ;

o encapsulation for safety...your
properties are your private
business, and you publish only }
those properties you want others to
have access to (stay tuned...) } 48194

9/20/16

Always Remember to Initialize!

e What if you declare an instance
variable, but forget to initialize it?

e The instance variable will
assume a “default value”

o ifits anint, it will be 0

o ifits anobject, it will be null—
aspecialvalue that means your
variable is not referencing any
instance at the moment

public class PetShop {

private DogGroomer _groomer;

public PetShop() {
//oops!
this.testGroomer();

public void testGroomer() {

Dog django = newDog();//local var

_groomer.groom(django) ;

}

} 49/94

NullPointerExceptions

e |[f avariable’s value is null and

e This particular error yields a

o When you run into one of these

public class PetShop {
private DogGroomer _groomer;

public Petshop() {

you try to give it a command, //oops!

you'll be rewarded with a runtime this.testGroomer();
error—you can't call a method }

on “nothing”!

public void testGroomer() {
Dog django = newDog();//local var
_groomer .groom(django) ;

}

NullPointerException

(we promise, you will)—edit your }
program to make sure you have
explicitly initialized all variables

NullPointerException

Instance Variables (1/2) public class bog

e Let's add an instance
variable to the Dogclass

e _hairLengthisanint that
will keep track of the lengh of
a Dog’s hair

e _hairLengthisassigneda
default value of 3 in he

private int _hairlength;

public Dog() {
_hairLength= 3;
}

Instance Variables (2/2) pubic class boet

e _hairLengthisaprivate

private int _hairlength;

public Dog() {
_hairLength= 3; /* alldogs have same
hairlenghth initially */

}

instance variable—can only
be accessed fromwithinDog
class

What if another object needs
to know or change the vaue
of _hairLength?

When a DogGroomer grooms

constructor .
a Dog, it needs to update
} _hairLength
[— 5104 st s 52/4
Accessors/Mutators ~ public class bog{ Accessors/Mutators — public class bog{
* Z:?nzltzii:\a/zrir:;zept:;i(;;lue of private int _hairlength; Y Sim“ar]y, aclass may providea private int _hairlength;
available via an accessor method ~ Public Dog() { mutator method to allow public Dog() {
that returns the value when called } —hairLength=3; another class to change the _hairLength= 3;
value of one ofits instance
¢ getHairlength . 1S an accessor public int getHairLength() { variables public int getHairLength() {
method for _hairLength return _hairLength; tHairL hi - return _hairLength;
e Can call getHairLength onan ’ rsneeth(a); Pfofniill‘sl_:nméh or '
instance of Dog to return its current - g public void setHairLength(int length) {
_hairLength value e Another object cancal) _hairLength = length;
e Remember: the return type you setHairlLengthon aDogto
specify and the value you return change the value it stores in
must match! 53004 _hairLength o 54194

9/20/16

Accessors/Mutators

e We've filled in the DogGroomer’s ~ Public class Dogaroorer {
groom method to modify the hair
length of the Dogitgrooms

public DogGroamer() {

}
e When a DogGroomer grooms a

dog, it calls the mutator
setHairLengthon the Dog and
passes in 1 as an aagument ¥

public void groan(Dog shaggybog) {
shaggyDog. setHairlength(1);

55/94

Example: Accessors(1/2)

public class PetShop {

}

e Can make sure groom method works by printing out the Dog's hair lengtl
before and after we sendit to the groomer

public class DogGroomer {
private DogGroomer _groomer;
public Doggroomer() {

public Petshop() {

_groomer = new DogGroomer(); }

this. testGroomer();
} public void groom(Dog ~shaggybog) {

shaggyDog. setHairLength(1) ;

public void testGroomer() {

Dog django = new Dog(); }

System.out.println(django. getHa irLen gth());

_groomer. groom(django) ;

System.out.println(django. getHa irLen gth());
}

e We use accessor getHairLength b retrieve the value that django
stores in its _hairlength instance variable 56/94

Example: Accessors(2/2)
e What values will be printed outto the consde?

public class Petshop {
private DogGroomer _groomer;

public class DogGroomer {

public DogGroomer() {
public Petshop() { o
_groomer = new DogGroomer () ;)
this. testGroomer();
public void groom(Dog ~shaggyDog) {

public void testGroomer() { shaggybog. setHairLength(1) ;

Dog django = new Dog(); N
System.out.println(django. getHa irLen gth());
_groomer. groom(django) ;
System.out.println(django. getHa irLen gth());
}

o First, 3 will be printed because that’s the initial value we set for
_hairLength in the Dog class’s constructor
o Next, groomer sets django’s hair Iength to 1, so 1 will be printed 57/04

public class PetShop {

}e groom will take in another parameter, and set dog's hair length to value of

Example: Mutators
e What if we don't always want to cut the dog's hair to a length of 1?
e When we tell groomer to groom, let’s also tell groomer how short to cut the hair

public class DogGroomer {
/* Constructor and other code elided */

public void groan(Dog shaggybog, int hairlength) {

public void testGroomer() { shaggyDog. setHairlength(hajriength);
Dog django = "GW'DOg()i } The groomer will cutthe dogs
_groomer.groom(django, H hair to a length of 2!

}

hairL ength

o Now pass two parameters when we call the groom method so that the _groomer
knows how long hairLength should be

58/94

et van 0 - 016080 15

Containmentand Association

e When writing a program, need to keep in mind “big
picture’—how are different classes related to each other?

e Relationships between objects can be described by
containment or association

e Object A contains Object B when B is a component of A (A
creates B). Thus A knows about B and can call methods on
it. But this is not symmetricall B can’t automatically call
methods on A

e Object C and Object D are associated if C “knows about”
D, but D is not a component of C; this is also non-symrgge@tzic

Example: Containment

e PetShop contains aDogGroomer public class PetShop {

e Containment relationship because private Dogiraomer _graomer;

PetShop itself instantiates a
DogGroomer with
“new DogGroomer();”

public PetShop() {
_groomer = newDogGroomer() ;
this.testGroomer();

}

e Since PetShop created a
DogGroomer and stored itin an
instance variable, all PetShop’s
methods “know” about the

public void testGroomer() {
Dog django = newDog();//local var
_groomer.groom(django) ;

_groomer and can access it ¥ 60/94

10

9/20/16

Example: Association (1/8)

public class DogGroomer {

Example: Association (2/8)

As noted, PetShop contains a
DogGroomer, so it can send

public class DogGroomer {

the instance of PetShop that the

DogGroomer belongs to public voidgroon(Dog shaggybog) {

shaggyDog. setHairlength(1);

6594

DogGroomer, we’'ll need to pass
it an instance of PetShop as an
argument. Which? The PetShop
instance that created the
DogGroomer, hence use this

e Wehaven'tseenan messages to the DogGroomer
association relationship yet—)
let's set one up! public DogGroaner() { ¢ Butwhat if the DogGroomer public DogGroaner() {
. needs to send messages to the
¢ Association means that one } PetShop she works in? }
object knows about another
object that is not one of its public voidgroam(Dog shaggyeg) { o the DogGroomer probably needs public void groam(Dog shaggyeg) {
shaggyDog. sethairlength(1); to know several things about her shaggyDog. setHairlength(1);
components PetShop: for example, operating
} hours, grooming supplies in stock,
customers currently in the shop...
o 6194 [62/94
Example: Association (3/8) Example: Association (4/8)
public class DogGroomer { public class DogGroomer {
e The PetShop keeps track of e This is what the full association private petshop _petsnop;
such information in its properties) looks like)
public DogGroamer() { s . . . public DogGroamer (PetShop myPetShop) {
e Can set up an association so e Let’s break it down line by line _petShop = myPetShop;
} .
that DogGroomer can send her e But note we're not yet making
PetShOp messages to retrieve public void groam(Dog shaggyDog) { use of the association in this public void groan(Dog shaggybog) {
information she needs shaggyDog. sethairlength(1); fragment shaggyDog. setHairlength(1);
} }
Aocres van Cam © 2016080 16 63/94 A van Coen © 2016068 16 6494
Example: Association (5/8) Example: Association (6/8)
public class DogGroomer {
e Modified DogGroomer’s private Petshop _petshop;
public class DogGroomer { constructorto take in a public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop;
.) private Petshamp _etsheps parameter of type PetShop N
e We declare an instance variable e Constructor will refer to it by the
named _petShop public DogGroamer (PetShop myPetShop) { name myPetShop
W L thi able t g _petShop = myPetShop; Wl s Fehop
¢ e wantihis varable to recor e Whenever we instantiate a private DogGrooner groaners

public Petshop() {
_groomer = new DogGroomer(this);
this. testGroomer();

¥

//testGroomer() elided
3
66/94

11

9/20/16

Example: Association (7/8)

o Now store myPetShop in

instance variable _petShop public class DogGroomer {

e _petShop now points to same
PetShop instance passed to its
constructor

private PetShop _petShop;

public DogGroamer (PetShop myPetShop) {

_petShop = myPetShop; // store the asso

e After constructor has been

Example: Association (8/8)

e Let's say we've writtenan accessor
method and a mutator methad in the
PetShop class:
getClosingTime() and
setNumCustomers (int customers)

public class DogGroomer {

private PetShop _petShop;
private Time _closingTime;

e If the DogGroomer ever needs to
know the closing time, or needs to

public DogGroomer(PetShop myPetShop) {
update the number of customers,

_petshop = myPetShop; // store assoc.

executed and can no |0nger she can doso by calling _closingTime = myPetShop.getClosingT ime() ;
f PetShop. an public void groan(Dog shaggybog) { . . _petShop. setNumCu stome rs(10) ;
reterence myPe p, Yy) shaggyDog. sethairlength(1); o getClosingTime() }
DogGr‘oomer‘ method Ca_n still } o setNumCustomers(int customers) }
access same PetShop instance }
by the name _petShop
- 6794 R 68/94
Association: Under the Hood (1/5) Associa
ublic class Petshop { . . class Petshop
private groome private DogGr
- petshon) public PetShop() myPetsh {
sroom and other ided for thi room and other methods elic
xample xample
Somewhere in memoty ... Somewhere in memory ...
g
Somewhere else in cur code, someane callsnewPetShop(). An instanceofPetShop iscreated somewherein
69/94 memory and PetShop’scorstructor initializesall its instancevariables (justa DogGroomerhere) 70/94
Association: Under the Hood (3/5) Association: Under the Hood (4/5)
bublic tShop { public class P op { public cl 8 .
orivat orivate DogGroomer _groomer; N
g -8 private _petshy
public Petshop() { . tShol public Petshop() { . public DogGroomer(PetShop — myPetShop) {
_groomer = new DogGroomer(this); _groomer = new DogGroomer(this); petshop = mypetshop;
r nd other m lided for thi s elided i

mewhere in memoly ...

skt

The PetShop instantiatesa new DogGroomer, passingitselfin asan agunmentto the DogGroomer’s corstructor
(remember thethis keyword?) 7104

When the DogGroomersconstuctor iscalled, its parameter, myPetShop, pointsto the same PetShop thatwas
passedin asan agumert. 72/04

12

9/20/16

Association: Under the Hood (5/5)

public Petshop() {

blic DogG Petsh Petsh
_groomer = new DogGroomer(this); public DogGrooner(Petshop mPesshop) {

_petShop = myPetShop;

The DogGroamerseés its _petShopinstance variableto pointto the samePetShop itreceivedasan argumert.
Now it“knowsabout’the petShop thatinstantided it And thereforeso do allits methads... 7394

Another Example: Association (1/6)

Here we have the class public class CS15Professor {

CS15Professor // declare instance variables here
// and here..
// and here...

We want CS15Professor to 77 and heret

know about his Head TAs—he
didn’t create them or vice versa,
hence no containment — they
are peer objects

public CS15Professor(/* parameters */) {

// initialize instance variables!

/7
/7 .

And we also want Head TAs to } "=

know about CS15Professor

Let's set up associations!

74194

Another Example: Association (2/6)
e The CS15Professor needs to public class CSI5Professor {
know about 4 Head TAs, all of // de;l:re instance variables here
whom will be instances of the % 2nd here.,
class HeadTA // and here!

public CS15Professor(/* parameters */) {
e Once he knows about them, he

can call methods of the class // initialize instance varisbles!
HeadTA on them: %

remindHeadTA, setUpLecture,) /o
etc.

e Take a minute and try to fillin ~ }
this class 75194

et van 0o 2 2016080 16

Another Example: Association (3/6)

Here’s our solution! public class CS15Professor {
private HeadTA _htal;
private HeadTA _hta2;
private HeadTA _hta3;
private HeadTA _hta4d;

Remember, you can choose
your own names for the

instance variables and public CS1Professor(HeadTA firstTA,

parameters HeadTA secondTA, HeadTA thirdTA
HeadTA fourthTA) {
The CS15Professor can now _htal = firstm;
i hta2 = secondlA;
send a message to one of his “htas = inivdas
HeadTAs like this: _hta4 = fourthra;

_hta2.setUpLecture();

76/94

Another Example: Association (4/6)

e We've got the CS15Professor public class CS15A0p {

class down // declare CS15Professor instancevar.

, // declare four HeadTA instance vars.
e Now let's create a professor 77 -

and head TAs from a class

that contains all of them:

CSlSApp pu/b/lii‘;lsctsalnsﬁlpﬁit)eihe four HeadTAs
e Try and fill in this class! "

o You can assume that the HeadTA

class takes no parameters in its }
constructor. ¥

/.
// instantiate the professor!

7704

Another Example: Association (5/6)

We declare _andy, _dan, public class CS154pp {

divya, _emily and _sophia private CS15Professor _andy;
P - . - private HeadTA _dan;
as instance variables private HeadTA “divy
private HeadTA _emily;
private HeadTA _sophia;

In the constructor, we
instantiate them public CS15pp() {
. dan = HeadTA();

Since the constructor of di\r:ya r;e:ewe:em%)l()

CS15Professor takes in 4 :iT,iﬂ;.“ﬁ:w”ﬁ:}?ﬁ%;.
HeadTAs, we pass in _dan, “andy = n :

andy = new CS1%Professor(_dan,
_divya, emily and _sophia N ~divya, _emily, _sophia);

78194

13

9/20/16

Another Example: Association (6/6)

public class CS15Professor { public class CS15Mpp {

private HeadTA _htal; private CS15Professor _andy;

private HeadTA _hta2; private HeadTA _dan;
private HeadTA _hta3; private HeadTA _divya;
private HeadTA _hta4; private HeadTA _emily;

private HeadTA _sophia;
public CS15Professor(HeadTA firstTA,
HeadTA secondTA, HeadTA thirdTA

public CS15app() {
HeadTA fourthTa){

_dan = new HeadTA();

_divya = new HeadTA();
htal = firstTA; _emily = new HeadTA();
secondTA; _sophia = new HeadTA();

“hta2 =

_hta3 = thirdTA; andy = new CS15Professor(_dan,
_htad = fourthra; _divya, _emily, _sophia);
“hta2.preplecture(); }

7994

More Associations (1/5)

public class CS15Mp {

private CS15Professor _andy;
private HeadTA _dan;
private HeadTA _divya;
private HeadTA _emily;
private HeadTA _sophia;

e What if we want the Head
TAs to know about
CS15Professor too?

public CS15App() {
dan = new HeadTA() ;

“divya = new HeadTA();
_emily = new HeadTA();

e Need to set up another
association

A sophia = new HeadTA();

e Canwe just do the same andy = new CS15Professor(_dan,

thing? ' _divya, _emily, _sophia);
¥

80/94

More Associations (2/5)

e This doesn’t work: when we ,up15c c1ass cssmp {
instantiate _dan, _divya,
_emily and _sophia, we
would like to pass them an
argument, _andy

private CS15Professor _andy;
private HeadTA _dan;
private HeadTA _divya;
private HeadTA _emily;
private HeadTA _sophia;

public CS15App() {
_dan = new HeadTA();
_divya = new HeadTA();
_emily = new HeadTA();
_sophia = new HeadTA();
_andy = new CS15rofessor(_dan,
_divya, _emily, _sophia);

e But_andy hasn’t been
instantiated yet! And can’t
initialize _andy first
because the headTAs
haven’t been created yet... }

e What can we try instead?

et van 0o 2 2016080 16

81/94

More Associations (3/5)
public class CS15App {

private CS15Professor _andy;
private HeadTA _dan;
private HeadTA _divya;
private HeadTA _emily;
private HeadTA _sophia;

e Need a way to pass _andy
to _dan, _divya, _emily
and _sophia after we
instantiate _andy

public CS15App() {

dan = new HeadTA();

divya = new HeadTA();

emily = new HeadTA();

sophia = new HeadTA();

andy = new CS15Professor(_dan,
_divya, _emily, _sophia);

e Use a new method,
setProf, and pass each
Head TA _andy

_dan.setProf (_andy) ;
_divya.setProf(_andy);
_emily.setProf(_andy);
_sophia.setProf (_andy);
}

T

82/94

More Associations (4/5)

public class CS158p {
public class HeadTA { private CS15Professor _andy;
private HeadTA _dan;
private HeadTA _divya;
private HeadTA _emily;
private HeadTA _sophia;

private CS15Professor _professor;
public HeadlA() {

//0ther code elided public cs15app() {

dan = new HeadTA() ;
} divya = new HeadTA();
emily = new HeadTA();
sophia = new HeadTA();
andy = new CS15Professor(_dan,
} _divya, _emily, _sophia);

public void setProf ((S15Professor prof) {
_professor = prof;

_dan.setProf (_andy) ;
. di .setProf(_andy);
o Now each HeadTA will know :e;\il{;.:etwgfgzzrd%;

about _andy! sophia.setProf Candy);
)m}m 83/94

More Associations (5/5)

e But what happens if setProf is never called?

e Will the Head TAs be able to call methods on the
CS15Professor?

e No! Wewould get a NullPointerException!

e So this is not a completely satisfactory solution, but we
will learn more tools soon that will allow us to develop a
more complete solution

84/94

14

9/20/16

Visualizing Containment and Association

Clicker Question

Is this a valid way to associate
Teacher and School?

—CS15App O “contains one
] instance of”
‘ “contains more than
one instance of”
ICS15Professor |:_’| HeadTA I —_—) “knows about”
A. Yes B. No
J—— 85094 N 86/94
Summary Announcements

Important concepts:

* Using local variables, which exist within a method

* Using instance variables, which store the properties
of instances of a class for use by multiple methods—
use themonly for thatpurpose

« Containment: when one object is a component of
another so the container can therefore
send the component it created messages

« Association: when one object knows about another
ob{ect that is notone of its’‘components—has to be
set up explicitly

87/94

et van 0o 2 2016080 16

« AndyBot is due tonight at 11:59pm- no late handin
o Please remember to run cs@15_handin AndyBot
= Just having the files in the directory is not enough
» Lab0 is due by the end of yourlab this week, Lab1
is out now
* Please only post private questions on Piazza
o TAs will make the question public if they think it will
benefit the class
» FastX issues? See the note on Piazza about X
Forwarding and SSH

88/94

15

