
9/20/16

1

1/94
Andr ies van Dam ã 2016 09/20/ 16

Lecture 4
Working with Objects:

Variables, Containment, and Association

2/94
Andr ies van Dam ã 2016 09/20/ 16

This Lecture:
● Storing values in variables

● Methods that take in objects as parameters

● Containment and association relationships (how
objects know about other objects in the same program)

● Packages (collections of related classes) and how to
import classes from other packages and use them in
your code

3/94
Andr ies van Dam ã 2016 09/20/ 16

Review: Methods
● Call methods: send messages to an object

andyBot.turnRight();

● Define methods: give a class specific capabilities
public void turnLeft() {

// code to turn Robot left goes here
}

4/94
Andr ies van Dam ã 2016 09/20/ 16

Review: Constructors and Instances
● Declare a constructor (a method called whenever an

object is “born”)
public Calculator() {

// code for setting up Calculator
}

● Create an instance of a class with the new keyword
new Calculator();

5/94
Andr ies van Dam ã 2016 09/20/ 16

Review: Parameters and Arguments
● Write methods that take in parameters (input) and have

return values (output), e.g., this Calculator’s method
public int add(int x, int y) {
//x, y are dummy (symbolic) variables

return x + y;
}

● Call such methods on instances of a class by providing
arguments (actual values for symbolic parameters)
myCalculator.add(5, 8);

6/94
Andr ies van Dam ã 2016 09/20/ 16

Review: Classes
● As we’ve mentioned, classes are just blueprints
● A class gives us a basic definition of something we want

to model
● It tells us what the properties and capabilities of that kind

of thing are (we’ll deal with properties in this lecture)
● Can create a class called pretty much anything you want,

and invent any methods and properties you choose for it!

9/20/16

2

7/94
Andr ies van Dam ã 2016 09/20/ 16

Review: Instantiation
● Instantiation means

building an object from
its class “blueprint”

● Ex: new Robot();
creates an instance of
Robot

● This calls the Robot
class’s constructor: a
special kind of method

The Robot
class

new Robot();

instance

8/94
Andr ies van Dam ã 2016 09/20/ 16

Review: Constructors

● A constructor is a
method that is called to
create a new object

● Let’s define one for the
Dog class

● All Dogs know how to
bark, eat, and wag their
tails

public class Dog {

public Dog() {
// this is the constructor!

}

public void bark(int numTimes) {
// code for barking goes here

}

public void eat() {
// code for eating goes here

}

public void wagTail() {
// code for wagging tail goes here

}
}

9/94
Andr ies van Dam ã 2016 09/20/ 16

Review: Constructors

● Constructors do not
specify a return type

● Name of constructor
must exactly match
name of class

● Now we can instantiate
a Dog in some method:

new Dog();

public class Dog {

public Dog() {
// this is the constructor!

}

public void bark(int numTimes) {
// code for barking goes here

}

public void eat() {
// code for eating goes here

}

public void wagTail() {
// code for wagging tail goes here

}
} 10/94

Andr ies van Dam ã 2016 09/20/ 16

Variables
● Once we create a Dog, we want to be able to give it

commands by calling methods on it!
● To do this, we need to name our Dog
● Can name an object by storing it in a variable

Dog django = new Dog();
/* named after Django Reinhardt – see https://www.youtube.com/watch?v=plpSfvdCH0Q */

● A variable stores information
● In this case, django is the variable, and it stores a

newly created instance of Dog somewhere in memory

11/94
Andr ies van Dam ã 2016 09/20/ 16

Syntax: Variable Declaration and Assignment
● To declare and assign a variable, thereby initializing it, in a single

statement is: Dog django = new Dog();

<type> <name> = <value>;

● Note: type of value must match declared type on left

● Note that we can reassign as many times as we like (example soon)

12/94
Andr ies van Dam ã 2016 09/20/ 16

Variables
Dog django = new Dog();

● The “=” operator assigns
the instance of Dog that we
created to the variable
django. We say “django
gets a new Dog”

● Now we can call methods
on our Dog using its new
name (django), e.g.,
django.bark();

django

9/20/16

3

13/94
Andr ies van Dam ã 2016 09/20/ 16

Assignment vs. Equality
In Java:

price= price + 10;

• Means “add 10 to the
current value of price
and assign that to
price"

In Algebra:

• price = price + 10 is a
logical contradiction

14/94
Andr ies van Dam ã 2016 09/20/ 16

● A variable stores information as either:
o a value of a primitive (aka base) type (like int or float)

o or a reference to an instance (like an instance of Dog) of an
arbitrary type stored elsewhere in memory – we symbolize a
reference with an arrow

● Think of the variable like a box; storing a value or
reference is like putting something into the box

● Primitives have a predictable memory size, while arbitrary
objects vary in size, hence Java simplifies its memory
management by having a fixed size reference to an
instance elsewhere in memory
o “one level of indirectness”

Variables Store Information: Values vs. References
int favoriteNumber = 9;

Dog django = new Dog();

favNumber

9

django

(somewhere else in memory)

15/94
Andr ies van Dam ã 2016 09/20/ 16

Clicker Question
Given this code, fill in the blanks:

Variable x stores a _____, and myCalc stores a _______.

A. value, value
B. value, reference
C. reference, value
D. reference, reference

int x = 5;
Calculator myCalc= new Calculator();

16/94
Andr ies van Dam ã 2016 09/20/ 16

Example: Instantiation (1/2)
public class PetShop {

/*constructor of trivial PetShop! */
public PetShop() {
this.testDjango();

}

public void testDjango() {
Dog django = new Dog();
django.bark(5);
django.eat();
django.wagTail();

}
…

}

● Let’s call the testDjango()
method within the
constructor of the PetShop
class

● Whenever someone
instantiates a PetShop, it in
turn calls testDjango(),
which in turn instantiates a
Dog

● Then it tells the Dog to bark,
eat, and wag its tail

17/94
Andr ies van Dam ã 2016 09/20/ 16

Example: Instantiation (2/2)
● Another example: can instantiate a a

MathStudent and then call that instance
to perform a simple, fixed, calculation

● First, create a new Calculator and
store it in variable named myCalc

● Next, tell myCalc to add 2 to 6 and store
result in variable named answer

● Finally, use System.out.println to
print value of answer to the console!

public class MathStudent {

/* constructor elided */

public void performCalculation() {
Calculator myCalc = new Calculator();
int answer = myCalc.add(2, 6);
System.out.println(answer);

}
…

}

18/94
Andr ies van Dam ã 2016 09/20/ 16

Objects as Parameters (1/4)

● Methods can take in objects as
parameters

● The DogGroomer class has a
method groom

● groom method needs to know
which Dog to groom

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog

}
}

9/20/16

4

19/94
Andr ies van Dam ã 2016 09/20/ 16

Objects as Parameters (2/4)
● DogGroomer’s groommethod takes

in a single parameter-- a Dog
● Always specify type, then name of

parameter
● Here, Dog is type and “shaggyDog”

is name (aka dummy/symbolic
parameter) we’ve chosen –
whatever reference to a dog is
passed in is called shaggyDog in
this method

● Note that in algebra, we only have
numeric types, so no need to
“declare” type explicitly

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog

}
}

nametype

20/94
Andr ies van Dam ã 2016 09/20/ 16

Objects as Parameters (3/4)
● How to call the groom

method?
● Do this in the PetShop

helper method
testGroomer()

● PetShop‘s call to
testGroomer()
instantiates a Dog and a
DogGroomer, then tells the
DogGroomer to groom the
Dog

public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

21/94
Andr ies van Dam ã 2016 09/20/ 16

Objects as Parameters (4/4)
• 0. Elsewhere in the program, some

method instantiates a PetShop
(thereby calling PetShop’s
constructor). Then:

1. The PetShop in turn calles the
testGroomer() helper method,
which instantiates a Dog and stores
a reference to it in the variable
django

2. Next, it instantiates a DogGroomer
and stores a reference to it in the
variable groomer

3. The groom method is called on
groomer, passing in django as an
argument; the groomer will think of
it as shaggyDog, a synonym

public class App {
public App() {

Petshop petSmart = new Petshop();
}

}

public class PetShop {
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}
}

1.
2.
3.

0.

22/94
Andr ies van Dam ã 2016 09/20/ 16

What is Memory?
• Memory (system memory, not disk

or other peripheral devices) is the
hardware in which computers store
information, both temporary and
permanent

• Think of memory as a list of slots;
each slot holds information (e.g., a
local int variable, or a reference to
an instance of a class)

• Here, two references are stored in
memory: one to a Dog instance,
and one to a DogGroomer instance

//Elsewhere in the program
Petshop petSmart = new Petshop();

public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

23/94
Andr ies van Dam ã 2016 09/20/ 16

Objects as Parameters: Under the Hood (1/6)
public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog goes here!

}
}

Somewhere in memory...

24/94
Andr ies van Dam ã 2016 09/20/ 16

Objects as Parameters: Under the Hood (2/6)
public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog goes here!

}
}

Somewhere in memory...

When we instantiate a Dog, he’s stored somewhere in memory. Our PetShopwill use the
name django to refer to this particular Dog, at this particular location in memory.

9/20/16

5

25/94
Andr ies van Dam ã 2016 09/20/ 16

Objects as Parameters: Under the Hood (3/6)
public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog goes here!

}
}

Somewhere in memory...

The same goes for the DogGroomer—we store a particular DogGroomersomewhere in
memory. Our PetShopknows this DogGroomer by the name groomer. 26/94

Andr ies van Dam ã 2016 09/20/ 16

Objects as Parameters: Under the Hood (4/6)
public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog goes here!

}
}

Somewhere in memory...

We call the groommethod on our DogGroomer, groomer. We need to tell her which Dogto groom
(since the groommethod takes in a parameter of type Dog). We tell her to groom django.

27/94
Andr ies van Dam ã 2016 09/20/ 16

Objects as Parameters: Under the Hood (5/6)
public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog goes here!

}
}

Somewhere in memory...

When we pass in djangoas an argument to the groom method, we’re telling the groom
method about him. When groomexecutes, it sees that it has been passed that particular Dog. 28/94

Andr ies van Dam ã 2016 09/20/ 16

Objects as Parameters: Under the Hood (6/6)
public class PetShop {

public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
// code that grooms shaggyDog goes here!

}
}

Somewhere in memory...

The groom method doesn’t really care which Dogit’s told to groom—no matter what another
object’s name for the Dogis , groomis going to know it by the name shaggyDog.

29/94
Andr ies van Dam ã 2016 09/20/ 16

Variable Reassignment (1/2)

● After giving a variable an initial
value, we can reassign it (make it
refer to a different object)

● What if we wanted our
DogGroomer to groom two different
Dogs when the PetShop opened?

● Could re-use the variable django
to first point to one Dog, then
another!

public class PetShop {

/* This is the constructor! */
public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);

}

}
30/94

Andr ies van Dam ã 2016 09/20/ 16

Variable Reassignment (2/2)

● First, instantiate another Dog, and
reassign variable django to point to it

● Now django no longer refers to the
first Dog instance we created, which
has already been groomed

● We then tell groomer to groom the
newer Dog

public class PetShop {

/* This is the constructor! */
public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog(); // reassign django
groomer.groom(django);

}

}

9/20/16

6

31/94
Andr ies van Dam ã 2016 09/20/ 16

Variable Reassignment: Under the Hood (1/5)
public class PetShop {

/* This is the constructor! */
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

32/94
Andr ies van Dam ã 2016 09/20/ 16

Variable Reassignment: Under the Hood (2/5)
public class PetShop {

/* This is the constructor! */
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

33/94
Andr ies van Dam ã 2016 09/20/ 16

Variable Reassignment: Under the Hood (3/5)
public class PetShop {

/* This is the constructor! */
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

34/94
Andr ies van Dam ã 2016 09/20/ 16

Variable Reassignment: Under the Hood (4/5)
public class PetShop {

/* This is the constructor! */
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

//old ref garbage collected

35/94
Andr ies van Dam ã 2016 09/20/ 16

Variable Reassignment: Under the Hood (5/5)
public class PetShop {

/* This is the constructor! */
public PetShop() {

this.testGroomer();
}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

//old ref garbage collected

36/94
Andr ies van Dam ã 2016 09/20/ 16

Clicker Question
What is the correct value of (a+b) after the
following code is executed?

A. 5
B. 9
C. 7
D. 6

int a = 3;
int b = 2;
a = b + 2;
b = a + 1;

9/20/16

7

37/94
Andr ies van Dam ã 2016 09/20/ 16

Local Variables (1/2)
● All variables we’ve seen so

far have been local
variables: variables declared
within a method

● Problem: the scope of a local
variable (where it is known
and can be accessed) is
limited to its own method—it
cannot be accessed from
anywhere else
o the same is true of method

parameters

public class PetShop {

/* This is the constructor! */
public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

local variables

38/94
Andr ies van Dam ã 2016 09/20/ 16

Local Variables (2/2)

● We created groomerand
django in our PetShop’s
helper method, but as far as
the rest of the class is
concerned, they don’t exist

● Once the method is executed,
they’re gone :(

● “Garbage Collection” – stay tuned

public class PetShop {

/* This is the constructor! */
public PetShop() {
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
DogGroomer groomer = new DogGroomer();
groomer.groom(django);
django = new Dog();
groomer.groom(django);

}

}

local variables

39/94
Andr ies van Dam ã 2016 09/20/ 16

Accessing Local Variables
• If you try to access a local

variable outside of it’s
method, you’ll receive a
“cannot find symbol”
compilation error.

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */
public PetShop() {

_groomer = new DogGroomer();
Dog django = new Dog();

}

public void exerciseDjango() {
django.playCatch();.

}

}

In Terminal:
Petshop .java :13: erro r: ca nnot find symb ol
djang o.pla yCat ch();

^
symbo l: va riab le dj ango
locat ion: clas s Pet Shop

40/94
Andr ies van Dam ã 2016 09/20/ 16

Introducing… Instance Variables!

● Local variables aren’t always what we want. We’d like every
PetShop to come with a DogGroomer who exists for as long
as the PetShop exists

● That way, as long as the PetShop is in business, we’ll have
our DogGroomer on hand

● We can accomplish this by storing the DogGroomer in an
instance variable

41/94
Andr ies van Dam ã 2016 09/20/ 16

What’s an Instance Variable?

● An instance variable models a property that all instances of a
class have
o its value can differ from instance to instance

● Instance variables are declared within a class, not within a single
method, and are accessible from anywhere within the class – its
scope is the entire class

● Instance variables and local variables are identical in terms of
what they can store—either can store a base type (like an int)
or a reference to an object (instance of some other class)

42/94
Andr ies van Dam ã 2016 09/20/ 16

Modeling Properties with Instance Variables (1/2)
● Methods model the capabilities of a

class
● All instances of same class have

exact same methods (capabilities)
and the same properties

● BUT: the potentially differing values
of those properties can differentiate a
given instance from other instances of
the same class

● We use instance variables to model
these properties and their values
(e.g., the robot’s size, position,
orientation, color, …)

9/20/16

8

43/94
Andr ies van Dam ã 2016 09/20/ 16

Modeling Properties with Instance Variables (2/2)

● All instances of a class have the same
properties, but the values of these properties
will differ

● All CS15Students might have property
“height”
o for one student, the value of “height” is 5’2”.

For another, it’s 6’4”

● The CS15Student class would have an
instance variable to represent height
o value stored in this instance variable would

differ from instance to instance

44/94
Andr ies van Dam ã 2016 09/20/ 16

When should I define an instance variable?
● In general, variables that fall into one of these three

categories should be instance variables rather than local
variables:
o attributes: descriptors of an object, e.g., color, height, age,...
o components: “parts” of an object. If you are modeling a car, its engine

and doors should be instance variables
o associations: things that are not part of an object, but that the object

needs to know about. For example, the instructor needs to know about
his/her TAs (more on this soon)

● All methods in a class can access all of its properties, to use
them and/or to change them

45/94
Andr ies van Dam ã 2016 09/20/ 16

Instance Variables (1/4)
● We’ve modified PetShop example to

make our DogGroomer an instance
variable

● Split up declaration and assignment of
instance variable:
o declare instance variable at the top of the

c lass, to notify Java
o initialize the instance variable by assigning a

value to it in the constructor

o purpose of constructor is to initialize all
instance variables so the instance has a valid
initial “state” at its “birth”

o state is the set of all values for all properties—
local variables don’t hold properties- they are
“temporaries”

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */
public PetShop() {
_groomer = new DogGroomer();
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();//local var
_groomer.groom(django);

}

}

declaration

assignment

46/94
Andr ies van Dam ã 2016 09/20/ 16

Instance Variables (2/4)

● Note that we include the keyword
private in declaration of our
instance variable

● private is an access modifier, just
like public, which we’ve been using
in our method declarations

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */
public PetShop() {
_groomer = new DogGroomer();
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();//local var
_groomer.groom(django);

}

}

access modifier

47/94
Andr ies van Dam ã 2016 09/20/ 16

Instance Variables (3/4)
● If declared as private, the method

or instance variable can only be
accessed inside the class

● If declared as public, can be
accessed from anywhere

● In CS15, you’ll primarily declare
instance variables as private

● Note that local variables don’t have
access modifier-- they always have
the same scope (their own method)

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */
public PetShop() {
_groomer = new DogGroomer();
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();//local var
_groomer.groom(django);

}

}

access modifier

48/94
Andr ies van Dam ã 2016 09/20/ 16

Instance Variables (4/4)
● CS15 instance variable rules:

o start instance variable names with
an underscore to easily distinguish
them from local variables

o make all instance variables private
so they can only be accessed from
within their own class!

o encapsulation for safety…your
properties are your private
business, and you publish only
those properties you want others to
have access to (stay tuned…)

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */
public PetShop() {
_groomer = new DogGroomer();
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();//local var
_groomer.groom(django);

}

}

9/20/16

9

49/94
Andr ies van Dam ã 2016 09/20/ 16

Always Remember to Initialize!

● What if you declare an instance
variable, but forget to initialize it?

● The instance variable will
assume a “default value”

o if it’s an int, it will be 0

o if it’s an object, it will be null—
a special value that means your
variable is not referencing any
instance at the moment

public class PetShop {

private DogGroomer _groomer;

/* This is the constructor! */
public PetShop() {
//oops!
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();//local var
_groomer.groom(django);

}

} 50/94
Andr ies van Dam ã 2016 09/20/ 16

NullPointerExceptions

● If a variable’s value is null and
you try to give it a command,
you’ll be rewarded with a runtime
error—you can’t call a method
on “nothing”!

● This particular error yields a
NullPointerException

● When you run into one of these
(we promise, you will)—edit your
program to make sure you have
explicitly initialized all variables

public class PetShop {

private DogGroomer _groomer;

public PetShop() {
//oops!
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();//local var
_groomer.groom(django);

}

}

NullPointerException

51/94
Andr ies van Dam ã 2016 09/20/ 16

Instance Variables (1/2) public class Dog {

private int _hairLength;

public Dog() {
_hairLength = 3;

}

/* bark, eat, and wagTail elided */
}

● Let’s add an instance
variable to the Dog class

● _hairLength is an int that
will keep track of the length of
a Dog’s hair

● _hairLength is assigned a
default value of 3 in the
constructor

52/94
Andr ies van Dam ã 2016 09/20/ 16

Instance Variables (2/2) public class Dog {

private int _hairLength;

public Dog() {
_hairLength = 3; /* all dogs have same

hairlenghth initially */
}

/* bark, eat, and wagTail elided */
}

● _hairLength is a private
instance variable—can only
be accessed from within Dog
class

● What if another object needs
to know or change the value
of _hairLength?

● When a DogGroomergrooms
a Dog, it needs to update
_hairLength

53/94
Andr ies van Dam ã 2016 09/20/ 16

Accessors/Mutators public class Dog {

private int _hairLength;

public Dog() {
_hairLength = 3;

}

public int getHairLength() {
return _hairLength;

}

/* bark, eat, and wagTail elided */
}

● The class may make the value of
an instance variable publicly
available via an accessor method
that returns the value when called

● getHairLength is an accessor
method for _hairLength

● Can call getHairLength on an
instance of Dog to return its current
_hairLength value

● Remember: the return type you
specify and the value you return
must match! 54/94

Andr ies van Dam ã 2016 09/20/ 16

Accessors/Mutators public class Dog {

private int _hairLength;

public Dog() {
_hairLength = 3;

}

public int getHairLength() {
return _hairLength;

}

public void setHairLength(int length) {
_hairLength = length;

}

/* bark, eat, and wagTail elided */
}

● Similarly, a class may provide a
mutator method to allow
another class to change the
value of one of its instance
variables

● setHairLength is a mutator
method for _hairLength

● Another object can call
setHairLengthon a Dog to
change the value it stores in
_hairLength

9/20/16

10

55/94
Andr ies van Dam ã 2016 09/20/ 16

Accessors/Mutators

● We’ve filled in the DogGroomer’s
groom method to modify the hair
length of the Dog it grooms

● When a DogGroomergrooms a
dog, it calls the mutator
setHairLengthon the Dog and
passes in 1 as an argument

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

56/94
Andr ies van Dam ã 2016 09/20/ 16

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer();
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
System.out.println(django. getHa irLen gth());
_groomer.groom(django);
System.out.println(django. getHa irLen gth());

}
}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1) ;

}
}

● Can make sure groommethod works by printing out the Dog’s hair length
before and after we send it to the groomer

Example: Accessors(1/2)

● We use accessor getHairLength to retrieve the value that django
stores in its _hairLength instance variable

57/94
Andr ies van Dam ã 2016 09/20/ 16

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer();
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
System.out.println(django. getHa irLen gth());
_groomer.groom(django);
System.out.println(django. getHa irLen gth());

}
}

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1) ;

}
}

● What values will be printed out to the console?
Example: Accessors(2/2)

● First, 3 will be printed because that’s the initial value we set for
_hairLength in the Dog class’s constructor

● Next, groomer sets django’s hair length to 1, so 1 will be printed 58/94
Andr ies van Dam ã 2016 09/20/ 16

public class PetShop {

// Constructor elided

public void testGroomer() {
Dog django = new Dog();
_groomer.groom(django, 2);

}

}

public class DogGroomer {
/* Constructor and other code elided */

public void groom(Dog shaggyDog, int hairLength) {
shaggyDog.setHairLength(hairLength);

}
}

● What if we don’t always want to cut the dog’s hair to a length of 1?
● When we tell groomer to groom, let’s also tell groomer how short to cut the hair

● groom will take in another parameter, and set dog’s hair length to value of
hairLength

● Now pass two parameters when we call the groom method so that the _groomer
knows how long hairLength should be

The groomer will cut the dog’s
hair to a length of 2!

Example: Mutators

59/94
Andr ies van Dam ã 2016 09/20/ 16

Containment and Association
● When writing a program, need to keep in mind “big

picture”—how are different classes related to each other?
● Relationships between objects can be described by

containment or association
● Object A contains Object B when B is a component of A (A

creates B). Thus A knows about B and can call methods on
it. But this is not symmetrical! B can’t automatically call
methods on A

● Object C and Object D are associated if C “knows about”
D, but D is not a component of C; this is also non-symmetric

60/94
Andr ies van Dam ã 2016 09/20/ 16

Example: Containment
● PetShop contains a DogGroomer

● Containment relationship because
PetShop itself instantiates a
DogGroomer with

“new DogGroomer();”

● Since PetShop created a
DogGroomer and stored it in an
instance variable, all PetShop’s
methods “know” about the
_groomer and can access it

public class PetShop {

private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer();
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();//local var
_groomer.groom(django);

}

}

9/20/16

11

61/94
Andr ies van Dam ã 2016 09/20/ 16

Example: Association (1/8)

● We haven’t seen an
association relationship yet—
let’s set one up!

● Association means that one
object knows about another
object that is not one of its
components

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

62/94
Andr ies van Dam ã 2016 09/20/ 16

Example: Association (2/8)

● As noted, PetShop contains a
DogGroomer, so it can send
messages to the DogGroomer

● But what if the DogGroomer
needs to send messages to the
PetShop she works in?
o the DogGroomer probably needs

to know several things about her
PetShop: for example, operating
hours, grooming supplies in stock,
customers currently in the shop...

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

63/94
Andr ies van Dam ã 2016 09/20/ 16

Example: Association (3/8)

● The PetShop keeps track of
such information in its properties

● Can set up an association so
that DogGroomer can send her
PetShop messages to retrieve
information she needs

public class DogGroomer {

public DogGroomer() {
// this is the constructor!

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

64/94
Andr ies van Dam ã 2016 09/20/ 16

Example: Association (4/8)

● This is what the full association
looks like

● Let’s break it down line by line

● But note we’re not yet making
use of the association in this
fragment

public class DogGroomer {

private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop; // store the assoc.

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

65/94
Andr ies van Dam ã 2016 09/20/ 16

Example: Association (5/8)

● We declare an instance variable
named _petShop

● We want this variable to record
the instance of PetShop that the
DogGroomer belongs to

public class DogGroomer {

private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop; // store the assoc.

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

66/94
Andr ies van Dam ã 2016 09/20/ 16

Example: Association (6/8)
● Modified DogGroomer’s

constructor to take in a
parameter of type PetShop

● Constructor will refer to it by the
name myPetShop

● Whenever we instantiate a
DogGroomer, we’ll need to pass
it an instance of PetShop as an
argument. Which? The PetShop
instance that created the
DogGroomer, hence use this

public class DogGroomer {
private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop; // store the assoc.

}
//groom method elided

}

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer(this);
this.testGroomer();

}

//testGroomer() elided
}

9/20/16

12

67/94
Andr ies van Dam ã 2016 09/20/ 16

Example: Association (7/8)

● Now store myPetShop in
instance variable _petShop

● _petShop now points to same
PetShop instance passed to its
constructor

● After constructor has been
executed and can no longer
reference myPetShop, any
DogGroomer method can still
access same PetShop instance
by the name _petShop

public class DogGroomer {

private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop; // store the assoc.

}

public void groom(Dog shaggyDog) {
shaggyDog.setHairLength(1);

}
}

68/94
Andr ies van Dam ã 2016 09/20/ 16

Example: Association (8/8)
● Let’s say we’ve written an accessor

method and a mutator method in the
PetShop class:
getClosingTime()and
setNumCustomers(int customers)

● If the DogGroomerever needs to
know the closing time, or needs to
update the number of customers,
she can do so by calling
o getClosingTime()

o setNumCustomers(int customers)

public class DogGroomer {

private PetShop _petShop;
private Time _closingTime;

public DogGroomer(PetS hop myPetShop) {
_petShop = myPetShop; // store assoc.
_closingTime = myPetShop.getCl osi ngT im e() ;
_petShop.setNu mCu sto me rs(10) ;

}
}

69/94
Andr ies van Dam ã 2016 09/20/ 16

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer(this);
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
_groomer.groom(django);

}
}

public class DogGroomer {
private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop;

}

/* groom and other methods elided for this
example */

}

Somewhere in memory...

Association: Under the Hood (1/5)

70/94
Andr ies van Dam ã 2016 09/20/ 16

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer(this);
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
_groomer.groom(django);

}
}

public class DogGroomer {
private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop;

}

/* groom and other methods elided for this
example */

}

Somewhere in memory...

Association: Under the Hood (2/5)

Somewhere else in our code, someone calls new PetShop(). An instance of PetShop is created somewhere in
memory and PetShop’s constructor initializes all its instance variables (just a DogGroomer here)

71/94
Andr ies van Dam ã 2016 09/20/ 16

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer(this);
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
_groomer.groom(django);

}
}

public class DogGroomer {
private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop;

}

/* groom and other methods elided for this
example */

}

Somewhere in memory...

Association: Under the Hood (3/5)

The PetShop instantiates a new DogGroomer, passing itself in as an argument to the DogGroomer’s constructor
(remember the this keyword?) 72/94

Andr ies van Dam ã 2016 09/20/ 16

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer(this);
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
_groomer.groom(django);

}
}

public class DogGroomer {
private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop;

}

/* groom and other methods elided for this
example */

}

Somewhere in memory...

Association: Under the Hood (4/5)

When the DogGroomer’s constructor is called, its parameter, myPetShop, points to the same PetShop that was
passed in as an argument.

9/20/16

13

73/94
Andr ies van Dam ã 2016 09/20/ 16

public class PetShop {
private DogGroomer _groomer;

public PetShop() {
_groomer = new DogGroomer(this);
this.testGroomer();

}

public void testGroomer() {
Dog django = new Dog();
_groomer.groom(django);

}
}

public class DogGroomer {
private PetShop _petShop;

public DogGroomer(PetShop myPetShop) {
_petShop = myPetShop;

}

/* groom and other methods elided for this
example */

}

Somewhere in memory...

Association: Under the Hood (5/5)

The DogGroomer sets its _petShop instance variable to point to the same PetShop it received as an argument.
Now it “knows about” the petShop that instantiated it! And therefore so do all its methods... 74/94

Andr ies van Dam ã 2016 09/20/ 16

Another Example: Association (1/6)
public class CS15Professor {

// declare instance variables here
// and here…
// and here…
// and here!

public CS15Professor(/* parameters */) {

// initialize instance variables!
// …
// …
// …

}

/* additional methods elided */
}

● Here we have the class
CS15Professor

● We want CS15Professor to
know about his Head TAs—he
didn’t create them or vice versa,
hence no containment – they
are peer objects

● And we also want Head TAs to
know about CS15Professor

● Let’s set up associations!

75/94
Andr ies van Dam ã 2016 09/20/ 16

Another Example: Association (2/6)
public class CS15Professor {

// declare instance variables here
// and here…
// and here…
// and here!

public CS15Professor(/* parameters */) {

// initialize instance variables!
// …
// …
// …

}

/* additional methods elided */
}

● The CS15Professor needs to
know about 4 Head TAs, all of
whom will be instances of the
class HeadTA

● Once he knows about them, he
can call methods of the class
HeadTA on them:
remindHeadTA, setUpLecture,
etc.

● Take a minute and try to fill in
this class 76/94

Andr ies van Dam ã 2016 09/20/ 16

Another Example: Association (3/6)
public class CS15Professor {

private HeadTA _hta1;
private HeadTA _hta2;
private HeadTA _hta3;
private HeadTA _hta4;

public CS15Professor(HeadTA firstTA,
HeadTA secondTA, HeadTA thirdTA
HeadTA fourthTA) {

_hta1 = firstTA;
_hta2 = secondTA;
_hta3 = thirdTA;
_hta4 = fourthTA;

}

/* additional methods elided */
}

● Here’s our solution!

● Remember, you can choose
your own names for the
instance variables and
parameters

● The CS15Professor can now
send a message to one of his
HeadTAs like this:

_hta2.setUpLecture();

77/94
Andr ies van Dam ã 2016 09/20/ 16

public class CS15App {

// declare CS15Professor instance var.
// declare four HeadTA instance vars.
// …
// …
// …

public CS15App() {
// instantiate the four HeadTAs
// …
// …
// instantiate the professor!

}
}

● We’ve got the CS15Professor
class down

● Now let’s create a professor
and head TAs from a class
that contains all of them:
CS15App

● Try and fill in this class!
o You can assume that the HeadTA

class takes no parameters in its
constructor.

Another Example: Association (4/6)

78/94
Andr ies van Dam ã 2016 09/20/ 16

public class CS15App {

private CS15Professor _andy;
private HeadTA _dan;
private HeadTA _divya;
private HeadTA _emily;
private HeadTA _sophia;

public CS15App() {
_dan = new HeadTA();
_divya = new HeadTA();
_emily = new HeadTA();
_sophia = new HeadTA();
_andy = new CS15Professor(_dan,

_divya, _emily, _sophia);
}

}

● We declare _andy, _dan,
_divya, _emily and _sophia
as instance variables

● In the constructor, we
instantiate them

● Since the constructor of
CS15Professor takes in 4
HeadTAs, we pass in _dan,
_divya, _emily and _sophia

Another Example: Association (5/6)

9/20/16

14

79/94
Andr ies van Dam ã 2016 09/20/ 16

public class CS15App {

private CS15Professor _andy;
private HeadTA _dan;
private HeadTA _divya;
private HeadTA _emily;
private HeadTA _sophia;

public CS15App() {
_dan = new HeadTA();
_divya = new HeadTA();
_emily = new HeadTA();
_sophia = new HeadTA();
_andy = new CS15Professor(_dan,

_divya, _emily, _sophia);
}

}

public class CS15Professor {

private HeadTA _hta1;
private HeadTA _hta2;
private HeadTA _hta3;
private HeadTA _hta4;

public CS15Professor(HeadTA firstTA,
HeadTA secondTA, HeadTA thirdTA
HeadTA fourthTA){

_hta1 = firstTA;
_hta2 = secondTA;
_hta3 = thirdTA;
_hta4 = fourthTA;
_hta2.prepLecture();

}
/* additional methods elided */

}

Another Example: Association (6/6)

80/94
Andr ies van Dam ã 2016 09/20/ 16

More Associations (1/5)
public class CS15App {

private CS15Professor _andy;
private HeadTA _dan;
private HeadTA _divya;
private HeadTA _emily;
private HeadTA _sophia;

public CS15App() {
_dan = new HeadTA();
_divya = new HeadTA();
_emily = new HeadTA();
_sophia = new HeadTA();
_andy = new CS15Professor(_dan,

_divya, _emily, _sophia);
}

}

● What if we want the Head
TAs to know about
CS15Professor too?

● Need to set up another
association

● Can we just do the same
thing?

81/94
Andr ies van Dam ã 2016 09/20/ 16

More Associations (2/5)
public class CS15App {

private CS15Professor _andy;
private HeadTA _dan;
private HeadTA _divya;
private HeadTA _emily;
private HeadTA _sophia;

public CS15App() {
_dan = new HeadTA();
_divya = new HeadTA();
_emily = new HeadTA();
_sophia = new HeadTA();
_andy = new CS15Professor(_dan,

_divya, _emily, _sophia);
}

}

● This doesn’t work: when we
instantiate _dan, _divya,
_emily and _sophia, we
would like to pass them an
argument, _andy

● But _andy hasn’t been
instantiated yet! And can’t
initialize _andy first
because the headTAs
haven’t been created yet…

● What can we try instead? 82/94
Andr ies van Dam ã 2016 09/20/ 16

More Associations (3/5)
public class CS15App {

private CS15Professor _andy;
private HeadTA _dan;
private HeadTA _divya;
private HeadTA _emily;
private HeadTA _sophia;

public CS15App() {
_dan = new HeadTA();
_divya = new HeadTA();
_emily = new HeadTA();
_sophia = new HeadTA();
_andy = new CS15Professor(_dan,

_divya, _emily, _sophia);

_dan.setProf(_andy);
_divya.setProf(_andy);
_emily.setProf(_andy);
_sophia.setProf(_andy);

}
}

● Need a way to pass _andy
to _dan, _divya, _emily
and _sophia after we
instantiate _andy

● Use a new method,
setProf, and pass each
Head TA _andy

83/94
Andr ies van Dam ã 2016 09/20/ 16

public class HeadTA {

private CS15Professor _professor;

public HeadTA() {

//Other code elided

}

public void setProf(CS15Professor prof) {
_professor = prof;

}
}

● Now each HeadTA will know
about _andy!

public class CS15App {

private CS15Professor _andy;
private HeadTA _dan;
private HeadTA _divya;
private HeadTA _emily;
private HeadTA _sophia;

public CS15App() {
_dan = new HeadTA();
_divya = new HeadTA();
_emily = new HeadTA();
_sophia = new HeadTA();
_andy = new CS15Professor(_dan,

_divya, _emily, _sophia);

_dan.setProf(_andy);
_divya.setProf(_andy);
_emily.setProf(_andy);
_sophia.setProf(_andy);

}
}

More Associations (4/5)

84/94
Andr ies van Dam ã 2016 09/20/ 16

More Associations (5/5)
● But what happens if setProf is never called?

● Will the Head TAs be able to call methods on the
CS15Professor?

● No! We would get a NullPointerException!
● So this is not a completely satisfactory solution, but we

will learn more tools soon that will allow us to develop a
more complete solution

9/20/16

15

85/94
Andr ies van Dam ã 2016 09/20/ 16

Visualizing Containment and Association

CS15App

CS15Professor HeadTA

“contains one
instance of”

“contains more than
one instance of”

“knows about”

86/94
Andr ies van Dam ã 2016 09/20/ 16

Clicker Question
Is this a valid way to associate
Teacher and School?

A. Yes B. No

public class School{
private Teacher _teacher;
public School() {
_teacher = new Teacher(this);
this.assignTeacher();
}

public class Teacher{
private School _school;

public Teacher(School school) {
_school = school;
}

87/94
Andr ies van Dam ã 2016 09/20/ 16

Summary
Important concepts:
• Using local variables, which exist within a method
• Using instance variables, which store the properties

of instances of a class for use by multiple methods—
use them only for that purpose

• Containment: when one object is a component of
another so the container can therefore
send the component it created messages

• Association: when one object knows about another
object that is not one of its components—has to be
set up explicitly

88/94
Andr ies van Dam ã 2016 09/20/ 16

Announcements
• AndyBot is due tonight at 11:59pm- no late handin

oPlease remember to run cs015_handin AndyBot
§ Just having the files in the directory is not enough

• Lab0 is due by the end of your lab this week, Lab1
is out now

• Please only post private questions on Piazza
oTAs will make the question public if they think it will

benefit the class
• FastX issues? See the note on Piazza about X

Forwarding and SSH

