Big-O and Sorting

Lecture 15
Outline

● How do we analyze an algorithm?
● Definition of Big-O notation
● Overview and analysis of sorting algorithms
Importance of Algorithm Analysis (1/2)

- “Performance” of an algorithm refers to how quickly it executes and how much memory it requires
 - performance matters when data grows in size!
 - can observe and analyze performance, then revise algorithm to improve its performance

- Algorithm analysis is so important that all Brown CS students are required to take at least one course covering it
Importance of Algorithm Analysis (2/2)

- Factors that affect performance
 - computing resources
 - language
 - implementation
 - size of data, denoted N
 - number of elements to be sorted
 - number of elements in ArrayList to iterate through
 - much faster to search through list of CS15 students than list of Brown students

- This lecture: a brief introduction to *Algorithm Analysis*!
- Goal: to maximize efficiency and conserve resources
Runtime

- **Runtime** of an algorithm varies with the input and typically grows with input size.
- In most of computer science we focus on [worst case runtime](#).
 - Easier to analyze and important for unforeseen inputs.
- **Average case** is what will happen most often. [Best case](#) requires least amount of work and is best situation you could have.
 - Average case is also important, best case is interesting but not insightful.
- How to determine runtime?
 - Inspect [pseudocode](#) and determine number of statements executed by algorithm as a function of input size.
 - Allows us to evaluate approximate speed of an algorithm independent of hardware or software environment.
 - Memory use may be even more important for smaller devices.
Elementary Operations

- Algorithmic “time” is measured in **elementary operations**
 - math (+, -, *, /, max, min, log, sin, cos, abs, ...)
 - comparisons (==, >, <=, ...)
 - function (method) **calls** and value **returns** (not counting body of the method)
 - variable assignment
 - variable increment or decrement
 - array **allocation**
 - creating a new object (careful, object's constructor may have elementary ops too!)

- For purpose of algorithm analysis, assume each of these operations takes same time: “**1 operation**” – we are only interested in “asymptotic performance” for large data sets (small differences don’t matter) – see Slide 9
Example: Constant Runtime

public int addition(int x, int y) {
 return x+y; //add and return 2 ops
}

- **Always** 2 operations performed
 - 1 addition
 - 1 return
- How many operations performed if this function were to add ten integers? Would it still be constant runtime?
Example: Linear Runtime

//find max of a set of positive integers
public int maxElement(int[] a) {
 int max = 0; //assignment, 1 op
 for (int i=0; i<a.length; i++) { //3 ops per loop
 if (a[i] > max) { //2 ops per loop
 max = a[i]; //2 ops per loop, sometimes
 }
 }
 return max; //1 op
}

• Worst case varies proportional to the size of the input list: $7n + 2$
• How many operations if the array had 1,000 elements?
• We’ll run the for loop more times as the input list grows
• The runtime increase is proportional to N, linear

Only the largest N expression without constants matters!
5n+2, 4n, 300n are all linear in runtime.
More about this on following slides!
Example: Quadratic Runtime

```java
public void printPossibleSums(int[] a) {
    for (i=0; i< a.length; i++) { //2 op per loop
        for (j=0; j<a.length; j++) { //2 op per loop
            System.out.println(a[i] + a[j]); // 4 ops per loop
        }
    }
}
```

- Requires about $8n^2$ operations (It is okay to approximate!)
- Number of operations executed grows quadratically!
- If one element added to list: element must be added with every other element in list
- Notice that linear runtime algorithm on previous slide had only one `for` loop, while this quadratic one has two nested `for` loops
Big-O Notation – OrderOf()

- But how to **abstract** from implementation…?
- **Big O** notation
- **$O(N)$** means an operation is done on each element once
 - N elements * constant operations/element = N operations
- **$O(N^2)$** means each element is operated on N times
 - N elements * N operations/element = N^2 operations
- Only consider “**asymptotic behavior**” i.e., when $N >> 1$
 - $(N$ is much greater than 1)
 - N is tiny when compared to N^2
Big-O Constants

- **Important**: Only the largest N expression *without constants* matters.

- We are not concerned about runtime with small numbers of data – we care about running operations on large amounts of inputs
 - $3N^2$ and $500N^2$ are both $O(N^2)$ – unrealistic if N is small, of course
 - $N/2$ is $O(N)$
 - $4N^2 + 2N$ is $O(N^2)$

- Useful sum that recurs frequently in analysis:

\[
1 + 2 + 3 + \cdots + N = \sum_{k=1}^{N} k = N(N+1)/2, \text{ which is } O(N^2)
\]
Social Security Database Example (1/3)

- Hundreds of millions of people in the US have a number associated to them
- If 100,000 people named John Smith, each has an individual SSN
- If government wants to look up information they have on John Smith, they use his SSN
Social Security Database Example (2/3)

- Say it takes 10^{-4} seconds to perform a constant set of operations on one SSN
 - running an algorithm on 5 social security numbers may take 5×10^{-4} seconds, and running an algorithm on 50 will only take 5×10^{-3} seconds
 - both are incredibly fast, a difference in runtime might not be noticeable by an interactive user
 - this changes with large amounts of data, i.e., the actual SS Database
Social Security Database Example (3/3)

- Say it takes 10^{-4} seconds to perform a constant set of operations on one SSN
 - to perform an algorithm with $O(N)$ on 300 million people, it will take **8.3 hours**
 - $O(N^2)$ takes **285,000 years**
- With large amounts of data, differences between $O(N)$ and $O(N^2)$ are HUGE!
Graphical Perspective (1/2)

- $f(N)$ on a small scale →
Graphical Perspective (2/2)

- $f(N)$ on a larger scale \rightarrow

- If I have 10 million items ($N = 10^7$)
 - and $O(\log N)$ runtime, I perform roughly 7 operations
 - and $O(N)$ runtime, I perform roughly 10 million operations
 - and $O(N^2)$ runtime, I perform roughly 100 trillion operations
Clicker Question (1/3)

What is the big-O runtime of this algorithm?

```java
public int sumArray(int[] array){
    int sum = 0;
    for (int i=0; i<array.length; i++){
        sum = sum + array[i];
    }
    return sum;
}
```

A) O(N) B) O(N^2) C) O(1) D) O(2^N)
Clicker Question (2/3)

What is the big-O \textbf{runtime} of this algorithm?

Consider the \texttt{getColor} method in LiteBrite:

\begin{verbatim}
public javafx.scene.paint.Color getColor(){
 return _currentColor;
}
\end{verbatim}

A) O(N) B) O(N^2) C) O(1) D) O(2^N)
Clicker Question (3/3)

What is the big-O runtime of this algorithm?

```java
public int sumSquareArray(int dim, int[][][] a){
    int sum = 0;
    for (int i=0; i<dim; i++){
        for (int j=0; j<dim; j++){
            sum = sum + a[j][i];
        }
    }
    return sum;
}
```

A) O(N) B) O(N²) C) O(1) D) O(2^N)
Sorting

- We use runtime analysis to help choose the best algorithm to solve a problem
- Two common problems: **sorting** and **searching** through a list of objects
- This lecture we will analyze different **sorting** algorithms to find out which is fastest
Sorting – Social Security Numbers

- Consider an example where run-time influences approach

- How would you sort every SSN in the Social Security Database in increasing order?

- There are multiple known algorithms for sorting a list
 - these algorithms vary in their runtime
Bubble Sort (1/2)

- Iterate through sequence, comparing each element to its right neighbor.
- Exchange adjacent elements if necessary; largest element bubbles to the right.
- End up with a sorted sub-array on the right. Each time we go through the list, need to switch one fewer item.
Bubble Sort (2/2)

- Iterate through sequence, comparing each element to its right neighbor
- Exchange adjacent elements if necessary; largest element bubbles to the right
- End up with a sorted sub-array on the right. Each time we go through the list, need to switch one fewer item
- \(N \) is the number of objects in sequence

```java
i = N;
sorted = false;
while((i > 1) && (!sorted))
{
    sorted = true;
    for(int j=1; j<i; j++){
        if (a[j-1] > a[j]) {
            temp = a[j-1];
            a[j-1] = a[j];
            a[j] = temp;
            sorted = false;
        }
    }
    i--;
}
```
Bubble Sort - Runtime

<table>
<thead>
<tr>
<th># operations</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i = N;</td>
</tr>
<tr>
<td>1</td>
<td>sorted = false;</td>
</tr>
<tr>
<td>N</td>
<td>while((i > 1) && (!sorted))</td>
</tr>
<tr>
<td>(N - 1)</td>
<td>{</td>
</tr>
<tr>
<td>(N-1)+(N-2)+</td>
<td>sorted = true;</td>
</tr>
<tr>
<td>...+2+1</td>
<td>for(int j=1; j<i; j++) {</td>
</tr>
<tr>
<td>= N(N-1)/2</td>
<td>if (a[j-1] > a[j]) {</td>
</tr>
<tr>
<td></td>
<td>temp = a[j-1];</td>
</tr>
<tr>
<td></td>
<td>a[j-1] = a[j];</td>
</tr>
<tr>
<td></td>
<td>a[j] = temp;</td>
</tr>
<tr>
<td></td>
<td>sorted = false;</td>
</tr>
<tr>
<td></td>
<td>}</td>
</tr>
<tr>
<td>(N - 1)</td>
<td>i--;</td>
</tr>
</tbody>
</table>

Worst-case analysis (sorted in inverse order):

- the `while`-loop is iterated N-1 times
- iteration i has 2 + 6 (i - 1) operations

Total:

$$2 + N + 2(N-1) + 6[(N-1)+...+2+1] = 3N + 6N(N-1)/2 = 3N^2 + ... = O(N^2)$$
Insertion Sort (1/2)

- Like inserting a new card into a partially sorted hand by bubbling to the left into a sorted subarray; little less brute-force than bubble sort
- Add one element a[i] at a time
- Find proper position, j+1, to the left by shifting to the right a[i-1], a[i-2], ..., a[j+1] left neighbors, until a[j] < a[i]
- Move a[i] into vacated a[j+1]
- After iteration i<n, the original a[0] ... a[i] are in sorted order, but not necessarily in final position
for (int i = 1; i < n; i++) {
 int toInsert = a[i];
 int j = i-1;
 while ((j >= 0) && (a[j] > toInsert)) {
 move a[j] forward;
 j--;
 }
 move toInsert to a[j+1];
}
Insertion Sort - Runtime

for (int i = 1; i < n; i++) {
 int toInsert = a[i];
 int j = i-1;
 while ((j >= 0) && (a[j] > toInsert)) {
 move a[j] forward;
 j--;
 }
 move toInsert to a[j+1];
}

- **while**-loop inside our **for**-loop. The while loops call on 1, 2, ..., N-1 operations... The **for**-loop calls the **while** loop N times.

- **O(N^2)** because we have to call on a **while** loop with around N operations N different times

- Reminder! **Constants do NOT matter with Big-O**
Selection Sort (1/2)

- Find smallest element and put it in $a[0]$
- Find 2nd smallest element and put it in $a[1]$, etc
- Less data movement (no bubbling)
Selection Sort (2/2)

What we want to happen:

for (int i = 0; i < n; i++) {
 find minimum element a[min] in subsequence a[i...n-1]
 swap a[min] and a[i]
}

for (int i = 0; i < n-1; i++) {
 int min = i;
 for (int j = i + 1; j < n; j++) {
 if (a[j] < a[min]) {
 min = j;
 }
 }
 int temp = a[min];
 a[min] = a[i];
 a[i] = temp;
}
Selection Sort - Runtime

- Most executed instructions are those in inner `for` loop
- Each such instruction is executed \((N-1) + (N-2) + \ldots + 2 + 1\) times
- Time Complexity: \(O(N^2)\)

```
for (int i = 0; i < n-1; i++) {
    int min = i;
    for (int j = i + 1; j < n; j++) {
        if (a[j] < a[min]) {
            min = j;
        }
    }
    temp = a[min];
    a[min] = a[i];
    a[i] = temp;
}
```
Comparison of Basic Sorting Algorithms

- Differences in **Best** and **Worst** case performance result from the state (ordering) of the input before sorting

- Selection Sort wins on data movement

- For small data, even the worst sort – Bubble – is fine!

<table>
<thead>
<tr>
<th></th>
<th>Selection</th>
<th>Insertion</th>
<th>Bubble</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparisons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best</td>
<td>$n^2/2$</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Average</td>
<td>$n^2/2$</td>
<td>$n^2/4$</td>
<td>$n^2/4$</td>
</tr>
<tr>
<td>Worst</td>
<td>$n^2/2$</td>
<td>$n^2/2$</td>
<td>$n^2/2$</td>
</tr>
<tr>
<td>Movements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Average</td>
<td>n</td>
<td>$N^2/4$</td>
<td>$n^2/2$</td>
</tr>
<tr>
<td>Worst</td>
<td>n</td>
<td>$n^2/2$</td>
<td>$n^2/2$</td>
</tr>
</tbody>
</table>
Merge Sort
Recap: Recursion (1/2)

- Recursion is a way of solving problems by breaking them down into smaller sub-problems, and using the results of the sub-problems to find the answer.

- Example: You want to determine what row number you’re sitting in (in Salomon), but you can only get information from asking the people in front of you.
 - They also don’t know what row they’re in, and ask the people in front of them.
 - People in the front row know that they’re row 1, since there is no row in front.
 - They tell the people behind them, who know that they’re 1 behind row 1, so row 2.
Recap: Recursion (2/2)

```java
public int findRowNumber(Row myRow) {

    if (myRow.getRowAhead() == null) { // base case!
        return 1;
    } else {
        // recursive case - ask the row in front
        int rowAheadNum = this.findRowNumber(myRow.getRowAhead());

        // my row number is one more than the row ahead’s number
        return rowAheadNum + 1;
    }
}
```
Recursive (Top Down) Merge Sort (1/6)

- **Partition** sequence into two sub-sequences of N/2 Elements.

- Recursively **partition** and sort each sub-arrays.

- **Merge** the sorted sub-arrays.
Recursive (Top Down) Merge Sort (2/6)

- **Partition** sequence into two sub-sequences of N/2 Elements.

- Recursively **partition** and sort each sub-arrays.

- **Merge** the sorted sub-arrays.
Recursive (Top Down) Merge Sort (3/6)

public class Sorts {
 public ArrayList<Integer> mergeSort(ArrayList<Integer> list) {
 if (list.size() == 1) {
 return list;
 }
 int middle = list.size() / 2;
 ArrayList<Integer> left =
 this.mergeSort(list.subList(0, middle));
 ArrayList<Integer> right =
 this.mergeSort(list.subList(middle, list.size()));
 return this.merge(left, right);
 }
 //code for merge() coming next!
}

ArrayList list is the sequence to sort.
Recursive (Top Down) Merge Sort (4/6)

```java
public class Sorts {
    public ArrayList<Integer> mergeSort(ArrayList<Integer> list) {
        if (list.size() == 1) {
            return list;
        }
        int middle = list.size() / 2;
        ArrayList<Integer> left =
            this.mergeSort(list.subList(0, middle));
        ArrayList<Integer> right =
            this.mergeSort(list.subList(middle, list.size()));
        return this.merge(left, right);
    }
    //code for merge() coming next!
}
```
public ArrayList merge(ArrayList<Integer> A, ArrayList<Integer> B) {
 ArrayList<Integer> result = new ArrayList<Integer>();
 int aIndex = 0;
 int bIndex = 0;
 while (aIndex < A.size() && bIndex < B.size()){
 if (A.get(aIndex) <= B.get(bIndex)) {
 result.add(A.get(aIndex));
 aIndex++;
 } else {
 result.add(B.get((bIndex));
 bIndex++;
 }
 }
 if (aIndex < A.size()){
 result.addAll(A.subList(aIndex, A.size()));
 }
 if (bIndex < B.size()) {
 result.addAll(B.subList(bIndex, B.size()));
 }
 return result;
}

- Add the elements from the two sequences in increasing order
- If there are elements left that you haven’t added, add the remaining elements to your result
Each part of the tree performs \(n \) operations to merge the two subproblems below it.

Because we divide each sequence by two, the algorithm makes \(\log_2 N \) merges.

\(O(N \log_2 N) \) which is way better than \(O(N^2) \) we can also drop the log base (2) and say \(O(N \log N) \), like how we can remove constants.

You will learn much more about how to find the runtime of these types of algorithms if you take CS16!
Iterative (Bottom Up) Merge Sort

- Merge sort can also be implemented iteratively...non-recursive!
- Begin by looping through the array of size N, sorting 2 items each. Loop through the array again, combining the 2 sorted items into a sorted item of size 4. Repeat... until there is a single item if size N!
- Number of iterations is $\log_2 N$, rounded up to nearest integer. 1000 elements in the list, only 10 iterations!!!
Comparing Algorithms Side by Side

Bubble Sort – $O(N^2)$

Insertion Sort – $O(N^2)$

Merge Sort – $(N\log_2 N)$
Clicker Question

Which sorting algorithm is the fastest?

A. Bubble Sort
B. Insertion Sort
C. Merge Sort
D. Selection Sort
That’s It!

- Runtime is a very important part of Algorithm analysis!
 - worst case run-time is what we generally focus on
 - know the difference between constant, linear, and quadratic run-time
 - calculate/ define run-time in terms of Big-O Notation

- Sorting!
 - runtime analysis is very significant for Sorting Algorithms!
 - types of sorting algorithms - bubble, insertion, selection, merge sort
 - different algorithms have different performances and time complexities.
What’s next?

- You have now seen how different approaches to solving problems can dramatically affect speed of algorithms
 - this lecture utilized arrays to solve most problems

- Subsequent lectures will introduce more **data structures** beyond arrays that can be used to handle collections of data

- We can use our newfound knowledge of algorithm analysis to strategically choose different data structures to further speed up algorithms!
Announcements

• Optional Q&A Review sessions in Macmillan 115 tonight at 7:30 and Sunday at noon—focused on recursion

• DoodleJump due dates:
 early: Tuesday 11/1, 11:59pm
 on-time: Thursday 11/3, 11:59pm
 late: Saturday 11/5, 10:00pm

• Start early, start today, start yesterday!