Instantiation vs. Initialization

Objects (aka Classes) are instantiated, variables are initialized
Example of instantiation:
new Guitarist();
“We have instantiated Guitarist”
Some examples of initialization:
Guitarist guitarist = new Guitarist();
_guitarist = new Guitarist();
int num = 3;
“We have initialized the instance variable *_guitarist’ and the local variables
‘guitarist’ and ‘num’
Initializing a variable means assigning it some initial value so that it is not null.
Declaring a variable is not the same thing as initializing it
o private Guitarist _guitarist; _guitaristis null, or has no value
o Guitarist guitarist; again, guitaristis null.
This is initializing a variable:
o int num = 5; here, numis given an initial value of 5.
o Remember that “=” means assignment or “gets,” not “is equal to”
_guitarist = new Guitarist(); this is instantiating an object. We create a new
instance of a Guitarist and initialize _guitarist to be the value of the new Guitarist

Constructors

Think of a class’s Constructor as a “blueprint” for building an instance of that class/type.
Just like declaring an instance variable, declaring the Constructor in your class file does
not make an object. You must always call new <Type>(); in another class in order for
an actual instance of that class to be created. This is the only way to create an instance
of, or to instantiate, an object.

Just like a regular method, all the code in the Constructor is executed when you call new
<Type>();

super() is a special example, and rare exception, of calling a Constructor. It does not
require the new keyword because we are not actually instantiating the superclass.
However, just like any Constructor, super () might need to take parameters, so when
you call super(), you have to make sure you pass in the object(s) that the superclass's
Constructor might be expecting. Also remember that super () is always the very first
thing called in the Constructor of the subclass.

A class's Constructor is almost always the place where you will initialize your instance
variables. Instance variables can be initialized to parameters passed into the Constructor,
to newly instantiated objects, or to literal/constant values like integers. You also might
want to give initial properties to certain objects using accessors and mutators in the
Constructor as well.



— Cool, so now | know how to instantiate objects using

Constructors, but what do | do with them after they’re created?
Glad you asked! When you instantiate an object, you have three options. You can...

1. Store it in an instance variable
package RockBand;

public class RockBand { // Thisis RockBand’s class declaration

/I Declare your instance variable of type Guitarist. At this point _guitarist is null.
private Guitarist _guitarist;

public RockBand() { // Thisisthe RockBand’s Constructor
/' Instantiate a Guitarist and initialize your _guitarist instance variable with it
_guitarist = new Guitarist();

public void party() {
_guitarist.drinkChampagne();
/* Other band members elided */

public void soundCheck() {
_guitarist.tuneGuitar();
_guitarist.playGuitar();

/I Other methods elided

Why would | want to do that?

Instance variables are super useful because they can be used anywhere in the class
they were instantiated in. That means that _guitarist can be used in any method
through the RockBand.java file as long as it has been initialized with an instance of type
Guitarist. As you can see, RockBand’s instance of Guitarist is used in both the
soundCheck and playSong methods.



Note: Instance variables should always start with an underscore followed by a lowercase
letter (examples: _variable, myVariable, thisIsMyVariable).

Store it in a local variable
package RockBand;

public class RockBand { // Thisis RockBand’s class declaration

/I Declare your instance variable of type Guitarist. At this point _guitarist is null.
private Guitarist _guitarist;

public RockBand() { // Thisis the RockBand’'s Constructor
/I Instantiate a Guitarist and initialize your _guitarist instance variable with it

_guitarist = new Guitarist();

/I Other methods elided

public void party() {
/I Declare a local variable of type Champange on the left and initialize it with a new
instance of Champange on the right.

Champagne champagne = new Champagne();
_guitarist.spray(champagne);
_guitarist.drink(champagne);
_guitarist.spill(champagne);

Why would | want to do that?

Local variables are very efficient. If you are only going to use a variable within one
method, it is best to use a local variable. This will keep your code concise and easier to
follow. In this case, the RockBand only needs Champagne when they party, so there is no
need to make it an instance variable.

Note: Local variables should always start with a lowercase letter, not an underscore
(examples: variable, myVariable, thisIsMyVariable).



3.

Don’t store it at all

public class RockBand { // Thisis RockBand’s class declaration

/I Declare your instance variable of type Guitarist. At this point _guitarist is null.
private Guitarist _guitarist;

public RockBand() { // Thisisthe RockBand’s Constructor
/I Instantiate a Guitarist and initialize your _guitarist instance variable with it
_guitarist = new Guitarist();

/I Other methods elided

public void party() {
Champagne champagne = new Champagne();
_guitarist.spray(champagne);
_guitarist.drink(champagne);
_guitarist.spill(champagne);
/I Instantiate an instance of Beyonce directly in hangWithCeleb’s parentheses.
_guitarist.hangWithCelebs(new Beyoncé());

Why would | want to do that?

Sometimes we want an instance of an object but don’t ever need to reference it within
that class or method again. Here we tell _guitarist to hang out with celebs and pass in
a new instance of Beyoncé. We are never going to use Beyoncé ever again in this class
(because the _guitarist can’t handle being in Beyoncé’s presence more than once
obviously), so we don’t need use a variable to store our new instance of Beyoncé.

Note: We can also instantiate objects outside of parameters and never do anything with
them at all. A classic example of this in your App.java file when you instantiate your
top-level class.
Examples:

e new LiteBrite();

e new Guitarist(new Guitar());



