
cs4_section2

February 8, 2019

Debugging is a very important (arguably THE MOST IMPORTANT) part of the programming
design process. Debugging can be done effectively in IDE, but that can be time consuming and
requires knowledge of an IDE. We’ll teach this later on in the course when you’re dealing with
more and more complicated functions.

Debugging should not just be done when you finish writing a program; it should be an ongo-
ing process while writing your code. You should debug your code every few lines- this makes it
much more manageable to fix bugs. The easiest and fastest method to debug is to use print state-
ments. Print statements allow the programmer to see the current state of the program without the
use of an IDE. Let’s look at an example.

In [50]: def search(num, list):
'''
Given a list, return true if a number is found in the list. Otherwise, return false.

'''
found = False
length = len(list) - 1
for i in range(length):

if num == i:
found = True

else:
found = False

return found

There are 3 bugs in the following code. We’ll debug these one at a time. Before we debug, let’s
write some test cases to check if our answers are correct.

In [51]: def test_search():
'''
Write some test cases here. Think of all the possible cases that we can get.
'''
#print(search(1,[0,1,2,3,4]))
print(search(10,[0,5,10]))

test_search()

0 False
5 False

1

10 False
True

Let’s try to identify our first bug. Use print statements to identify which variables are incor-
rectly set or run during iteration. Write your code below with the statements.

In []: def search(num, list):
'''
Given a list, return true if a number is found in the list. Otherwise, return false.
'''
found = False
length = len(list) - 1
for i in range(length):

if num == i:
found = True

else:
found = False

return found

Let’s try to identify our second bug. Use print statements to identify which variables are
incorrectly set or run during iteration. Write your code below with the statements. Remember,
you can add more test cases if you think these examples need to be set.

In []: def search(num, list):
'''
Given a list, return true if a number is found in the list. Otherwise, return false.
'''
found = False
length = len(list) - 1
for i in range(length):

if num == i:
found = True

else:
found = False

return found

Let’s try to identify the final bug. Use print statements to identify which variables are incor-
rectly set or run during iteration. Write your code below with the statements.

In []: def search(num, list):
'''
Given a list, return true if a number is found in the list. Otherwise, return false. This is correct
'''
found = False
length = len(list)
for i in list:

print(i, found)
if num == i:

2

found = True
return found

else:
found = False

return found

In [38]: def reverse(s):
"""
This function takes in a string and reverses it WITHOUT using list splicing. Try to write this program using loops
instead.
"""
reverse=""
for char in s:

reverse = char+reverse
return reverse

Testing is a very important process of the design and implementation process. Write some test
cases below using assert.

In [39]: def test_reverse():
"""
Add your test cases below
"""
assert(reverse('hello')=='olleh'), "Normal case failed"
assert(reverse('a')=='a'), "Single character case failed"
assert(reverse('aba')=='aba'), "Palindrome case failed"
assert(reverse('')==''), "Blank case failed"
print("we're done!")

test_reverse()

we're done!

The next bit of code that we will work with is manipulating images. You can think of images
as 2D arrays that are objects.

So quickly: what is an object?
An object, in coding, has features (attributes) and can do things (have methods or functions).
For instance, a puppy might have atrributes such as age, breed, and fur color, while having

the methods bark, eat, and sleep. We’ll talk about this further in the semester, but it is good to
understand the basics behind objects- we’ll be using them on HW02.

The object that we will be using on HW2 is image. The image object has many attributes- the
important ones that we want is the height and width (measured in pixels) and the RGB (red-green-
blue) value of each pixel. The scale that we will use is from 0-255 for each RGB. Thus, (0,0,0) is
black and (255,255,255) is white. You can test more colors here. Let’s look at some code that inverts
the colors in image- i.e. we get the complementary color, like red to cyan.

Trace the code and try to figure out what each line does:

3

https://www.google.com/search?num=30&ei=79JZXMnpCfHF_QbHvqWYCA&q=rgb+color+picker&oq=rgb+color&gs_l=psy-ab.3.1.0i67l4j0j0i67l3j0j0i67.3372.5289..6011...0.0..0.99.820.9......0....1..gws-wiz.......0i71j35i39j0i20i263.TV1WJmL6mQY

def invert(filename):
img = load_image(filename)
height = img.get_height()
width = img.get_width()
for r in range(height):

for c in range(width):
rgb = img.get_pixel(r, c)
red = rgb[0]
green = rgb[1]
blue = rgb[2]
new_rgb = [255 - red, 255 - green, 255 - blue]
img.set_pixel(r, c, new_rgb)

new_filename = 'invert_' + filename
img.save(new_filename)

How would we modify the code to work only on the top half of the image? Bottom half of the
image? Checkerboard manager?

In []: True

4

