Lecture 07
A First Loo at Reurion

It’s a baby holding a smaller baby! If that ain’t recursion idk what is. Oh wait.. |
don’t know what recursion is.... what’s that?

based in part on notes from the CS-for-All curriculum developed at Harvey Mudd College and
Boston University

Last Time (lecture 06)

Methods (functions attached to objects)

« string.lower ()

« file.close()

File Processing

o Opening and Closing Text-based Files

« Reading 1 line vs. whole file

Splitting strings

e s.split() # for whitespace
e s.split(’,’) # for CSV files
Dictionaries

« data = {'key1': valuel, 'key2': value2}
« datal[key1] = valuel

Markov models and Project 1
e due Thursday, Feb. 28 @ midnight

Lecture 07 Goals

1. Introduce recursion design process
a. function calling itself!
2. Application of Test Driven Design (TDD) to recursion

3. Astime allows:
a. lambda functions
b. filter, map, & reduce
c. debugging using pdb (Python debugger)

Remember this slide?

recursion
def fac(n):
if n ==
return 1
else:

rest = fac(n-1)
return n * rest

map

def fac(n):
return reduce(lambda x,y
range(1,max(2,n+1)))

DoXFy N

for loop

def fac(n):
result = 1
for x in range(1, n+1):
result *= x
return result

while loop

def fac(n):
result = 1
while n > O:
result *= n
n=n-1
return result

Functions Calling Themselves: Recursion!

def fac(n):
if n <= 1:
return 1 Remember this
function? factorial?
else:
return n * fac(n - 1)

* Recursion solves a problem by reducing it
to a simpler or smaller problem of the same kind.

* the function calls itself to solve the smaller problem!

* We take advantage of recursive substructure.
* the fact that we can define the problem in terms of itself

n! = n?* (n-1)!

Functions Calling Themselves: Recursion! (cont.)

def fac(n):
if n <= 1:
return 1 base case
else;

return n * fac(n - 1) [recursive case

* (One recursive call leads to another...

fac(5h) 5 * fac(4)
5 * 4 * fac(3)

 We eventually reach a problem that is small enough
to be solved directly - a base case.

 stops the recursion
* make sure that you always include one!

Recursion Without a Base Case - infinite loop!

http://blog.stevemould.com/the-droste-effect-image-recursion/

n * fac(n-1)

the stack

remembers
all of the
individual
calls to fac
and their
variables

A fac(5)

5 * fac(4)

A

4 * fac(3)

3 * fac(2)

2 * fac(1)

n * fac(n-1)

fac(5)

5 * fac(4)

A

4 * fac(3)

3 * fac(2)

A

The final result
gets built up

on the way back
from the base case!

2 *

1

I_H
1

n * fac(n-1)

fac(5)

5 * fac(4)

A

4 * fac(3)

3 * fac(2)

A

The final result
gets built up

on the way back
from the base case!

2 *

n * fac(n-1)

fac(5)

5 * fac(4)

A

4 * fac(3)

Ve

3*

2

The final result
gets built up

on the way back
from the base case!

n * fac(n-1)

fac(5)

5 * fac(4)

A

T

6

The final result
gets built up

on the way back
from the base case!

n * fac(n-1)

fac(5)

-
5 *

24

A\

The final result
gets built up

on the way back
from the base case!

n * fac(n-1)

fac(5)

result;

120

Alternative Version of fac(n)

def fac(n):
1f n <= 1;
return 1
else:

rest = fac(n - 1)
return n * rest

 Storing the result of the recursive call will occasionally
make the problem easier to solve.

 Italso makes your recursive functions easier to trace and debug.

 We highly recommend that you take this approach when
debugging!

Let Recursion Do the Work For You!

You handle the base case
— the easiest case!
fac(n): /////
n <= 1:
Recursion does
1 almost all of the
rest of the problem!

rest = fac(n-1)
n * rest

™S

You specify
one step
at the end.

Recursively Processing a List or String

You can think about (and process) sequences recursively!
* astring is a character followed by a string...
* alistis an element followed by a list...

Let s be the sequence (string or list) that we're processing.

Do one step!
* use S[0] to access the initial element
* do something with it

Delegate the rest!
* use S[1:] to get the rest of the sequence.
* make a recursive call to process it!

Recursively Finding the Length of a String

mylen(s):
""" returns the number of characters in s
input s: an arbitrary string

base case

recursive case

* Askyourself:

When can I determine the length of S without
looking at a smaller string?

How could I use the length of anything smaller
than s to determine the length of S?

Recursively Finding the Length of a String

mylen(s):

""" returns the number of characters in s
input s: an arbitrary string
—= e # base case
return 0

; # recursive case
len_rest = mylen(s[1:])
return len_rest + 1

* Askyourself:

When can I determine the length of S without
looking at a smaller string?

How could I use the length of anything smaller
than s to determine the length of S?

mylen(s):
How recursion works... s == "'

mylen('wow')

s = ‘wow' len_rest = mylen(s[1:1)
len_rest = mylen('ow") len_rest + 1

mylen('ow"')
s = 'ow'
len_rest = mylen('w")
4 different
mylen('w') stack frlam.es,
= = v each with its own

len_rest = mylen('") sand len_rest

mylen('")

S — | I |
base case!
return 0

How recursion works...

mylen('wow')
s = "'wow'
len_rest = mylen('ow")

mylen('ow"')
s = 'ow'

len_rest = mylen('w")

mylen(s):
g == "'

len_rest = mylen(s[1:])
len_rest + 1

4 different

mylen('w"')
S — IWI

len_rest = mylen('') = 0

|

stack frames,
each with its own
sand len_rest

mylen('")

S — | I |
base case!
return 0

How recursion works...

mylen('wow')
s = 'wow'

len_rest = mylen('ow")

mylen('ow"')
s = 'ow'

len_rest = mylen('w")

mylen(s):

g == "'

len_rest = mylen(s[1:])
len_rest + 1

The final result
gets built up

mylen('w"')
S — IWI
len_rest

= mylen('"') =0
return q-+1 =1

on the way back
from the base case!

\

len_rest

mylen(s):

How recursion works... S == 0
mylen('wow') :
s = 'wow' len_rest = mylen(s[1:])
len_rest = mylen('ow") len_rest + 1
mylen('ow')
s = 'ow'
len_rest = mylen('w') = 1 The final result
\ gets built up
\ on the way back
mylen('W') from the base case!
s = 'w

len_rest = mylen{"'') = 0
return 0+ 1 =1

How recursion works...

mylen('wow')
s = "'wow'
len_rest = mylen('ow")

mylen('ow"')
s = 'ow'

len_rest = mylen('w') = 1
return 1+1=2

mylen(s):

g == "'

len_rest = mylen(s[1:])
len_rest + 1

The final result
gets built up

on the way back
from the base case!

How recursion works...

mylen('wow')
s = 'wow'
len_rest = mylen('ow') = 2
\\
mylen('ow"')
S = 'ow'

len_rest = mylen('w') = 1
return 1+1=2

mylen(s):

g == "'

len_rest = mylen(s[1:])
len_rest + 1

The final result
gets built up

on the way back
from the base case!

How recursion works...

mylen('wow')
s = 'wow'
len_rest = mylen('ow') = 2
return 2+ 1 =3

mylen(s):

g == "'

len_rest = mylen(s[1:])
len_rest + 1

The final result
gets built up

on the way back
from the base case!

How recursion works...

mylen('wow')

s = 'wow'
len_rest

mylen('ow') = 2

return 2+ 1 =3

result: 3

mylen(s):
S == ":

len_rest = mylen(s[1:])
len_rest + 1

How many times will mylen() be called?

S == ''- # base case
; # recursive case
len_rest = mylen(s[1:])
len_rest + 1

print(mylen('step"'))

>

m Y O
S U b W -

How many times will mylen() be called?

base case
: # recursive case
len_rest = mylen(s[1:])

len_rest + 1

print(mylen('step"'))

>

m Y O
oS 0 b W -

mylen(s):

mylen('step’) SEE_E-
s = 'step’ 0
len_rest = mylen('tep')
len_rest = mylen(s[1:])
mylen('tep') len_rest + 1
s = '"tep’
len_rest = mylen('ep")
mylen('ep"')
s = 'ep’
len_rest = mylen('p") 5 different
stack frames,
each with its own
l | |
mMEQELTng sand len_rest
len_rest = mylen('")
mylen(" ")
S — | I |

base case!
return 0

mylen(s):

mylen('step’) SEE_E-
s = 'step’ 0

len_rest = mylen('tep')

len_rest = mylen(s[1:])

mylen('tep') len_rest + 1
s = '"tep’

len_rest = mylen('ep")

mylen('ep"')
s = 'ep’

len_rest = mylen('p")

mylen('p’)
S — Ipl

len_rest = mylen('') = 0

mylen(" ")

S — | I |
base case!
return 0

mylen(s):

mylen('step’) SEE_E-
s = 'step’ 0
len_rest = mylen('tep')
len_rest = mylen(s[1:])
mylen('tep’) return len_rest + 1
s = '"tep’
len_rest = mylen('ep")
mylen('ep"')
s = 'ep' The final result
len_rest = mylen('p') = 1 gets built up
\ on the way back
S from the base case!
mylen('p"’) |
S — 1 p 1
len_rest =0

return q +

mylen() ")
1 1

\

len_rest

mylen('step')

s = 'step’
len_rest =

mylen('tep')

mylen('tep')

s = '"tep’
len_rest = mylen('ep') = 2

mylen(s):

g == "'

len_rest = mylen(s[1:])
return len_rest + 1

\\‘
mylen('ep"')
S — lepl

len_rest = mylen({p') = 1
return 1T + 1 = 2

The final result
gets built up
on the way back

\

len _rest

from the base case!

mylen('step')
s = 'step’
len_rest =

mylen('tep') = 3

N\

AN

mylen('tep')

return

s = '"tep’
len_rest = mylen(jep') = 2

2 + 1 =13

\

len rest

mylen(s):

g == "'

len_rest = mylen(s[1:])
return len_rest + 1

The final result
gets built up

on the way back
from the base case!

mylen(s):

mylen('step') s == "":
s = 'step’ 0

len_rest = mylen('tep') = 3
return 3 + 1 = 4

len_rest = mylen(s[1:])

return len_rest + 1
result: 4

The final result
gets built up

on the way back
from the base case!

What is the output of this program?

foo(x, y):
X <= y:

y

X + foo(x - 2, y + 1)

print(foo(9, 2))

21
26

oY aw»

What is the output of this program?

foo(x, y):
X <= y:

y

X + foo(x - 2, y + 1)

print(foo(9, 2))

21
26

oY aw»

_ foo(x, Vy):
How recursion works... X <:yy;
return y

x + foo(x-2, y+1)

foo(9, 2)

A

9 + foo(7, 3)

A

7 + foo(5, 4)

A

5 + foo(3, 5)

FJ\
5

_ foo(x, Vy):
How recursion works... X <:yy;

return y

x + foo(x-2, y+1)

foo(9, 2)
//\ R
9 + foo(7, 3) The final result
f/\ gets built up
A on the way back
7 + foo(5, 4) from the base case!

A

5 +5

foo(x, y):

How recursion works... X <= y:
return y
x + foo(x-2, y+1)

foo(9, 2)

N a

9 + foo(7, 3) The final result

f/\ gets built up
A on the way back

7 + 10 from the base case!

foo(x, y):

How recursion works... X <= y:
return y
x + foo(x-2, y+1)
foo(9, 2)
N N
9 + 17 The final result

gets built up
on the way back
from the base case!

_ foo(x, y):
How recursion works... X <= y:
return y

x + foo(x-2, y+1)

foo(9, 2)

result: 26

Designing a Recursive Function

Use Test Driven Design and then

Start by programming the base case(s) and testing.

» What instance(s) of this problem can I solve directly
(without looking at anything smaller)?

Find the recursive substructure.

* How could I use the solution to any smaller version
of the problem to solve the overall problem?

Do one step!

Delegate the rest to recursion!

A Recursive Function for Counting Vowels

num_vowels(s):
""" returns the number of vowels in s
input s: a string of lowercase letters

We'll design this together!

* Examples of how it should work:

>>> num_vowels('compute')
3

>>> num_vowels('now"')
1

 The 1n operator will be helpful:
>>> 'fun' 1in 'function'
True
>>> '1' 1n 'team'
False

Test Driven Design Steps

Inputs/Outputs, special cases
Function signature
Design test cases, then code function

Refined testing as coding proceeds

3.

Test Driven Design Steps

Inputs/Outputs, Special Cases

Returns number of vowels in a string argument
e S empty, 1.e. s=""'
« s with one vowel
« s with more than one vowel
s with vowel at beginning or end

Function Signature

num_vowels(s):
""" returns the number of vowels in s

input s: a string of lowercase letters

Test Cases

Design Questions for num_vowels()

When can I determine the # of vowels in S without
looking at a smaller string?

How could I use the solution to anything smaller
than S to determine the solution to S?

d 2 I 4

\ f

You can only see the first What about this string?
letter of this string.

If | told you the # of vowels

in the covered portion,

how would you determine the

total number of vowels?

Design Questions for num_vowels()

When can I determine the # of vowels in S without
looking at a smaller string?

How could I use the solution to anything smaller
than S to determine the solution to S?

aliens rejoice
You can only see the first What about this string?
letter of this string. .
+
If | told you the # of vowels 0 (# 1n covered)

in the covered portion,
how would you determine the
total number of vowels?

1 + (# 1in covered)

The recursive call gives us (# in covered)!!!

m Y aw»

How Many Lines of This Function Have a Bug?

num_vowels(s):
S==||:
0
num_vowels(s[0:])
s[0] ‘aelou’:
1

0

w N -~ O

more than 3

m Y aw»

How Many Lines of This Function Have a Bug?

num_vowels(s):

S == ":
0
num_vowels(s[1:])
s[0] ‘aelou’:
1 + rest
0O + rest

w NN -~ O

more than 3

num_vowels(s):
S == J U o

How recursion works... 5

num_vowels('ate')
s = 'ate'
rest = num_vowels('te')

rest = num_vowels(s[1:])
s[0] in 'aeiou':
return 1 + rest

else:
num vowels('te"') return 0 + rest
s = 'te'
rest = num_vowels('e')
.y 4 different
num_vowels('e")
PN stack frames,
s = 'e oL
_ i each with its own
rest = num_vowels('"'")
s and rest

base case!
return 0

num_vowels(s):
S == J U o

How recursion works... 5

num_vowels('ate')
s = 'ate'
rest = num_vowels('te')

rest = num_vowels(s[1:])
s[0] in 'aeiou':
return 1 + rest

else:
num vowels('te') return 0 + rest
s = 'te'
rest = num_vowels('e')
.y 4 different
num_vowels('e")
< = '@ stack frames,
rest = num_vowels('') = 0 each with its own
| s and rest

base case!
return 0

num_vowels(s):

S==ll.

How recursion works... 5

num_vowels('ate')
s = 'ate'
rest = num_vowels('te')

rest = num_vowels(s[1:])
s[0] in 'aeiou':
return 1 + rest
else:

num_vowels('te') return 0 + rest
S — ltel
rest = num_vowels('e')

The final result

num vowels('e') gets built up
s = 'e'" s[0] -> 'e' on the way back
rest = num_vowels('') = 0 from the base case!
return 1 + Q = 1

\

rest

How recursion works...

num_vowels('ate')
s = 'ate'

rest = num_vowels('te')

num vowels('te"')
s = 'te'

\

rest = num_vowels('e') = 1

\

num_vowels('e')
s = 'e' s[0] ->
rest = num_vowels
return 1 + 0 = 1

el

)

num_vowels(s):

S==ll.

0

rest = num_vowels(s[1:])
s[0] in 'aeiou':
return 1 + rest
else:
return 0 + rest

The final result
gets built up

on the way back
from the base case!

num_vowels(s):

S == "'"':

How recursion works... 5

num_vowels('ate')
s = 'ate'
rest = num_vowels('te')

rest = num_vowels(s[1:])
s[0] in 'aeiou':
return 1 + rest
else:

num vowels('te"') return 0 + rest
s = 'te' s[0] -> '"t'
rest = num_vowels('e') = 1
return 0 + 1 =1

The final result
gets built up

on the way back
from the base case!

num_vowels(s):

S==ll.

How recursion works... 5

num_vowels('ate')
s = 'ate'
rest = num_vowels('te') = 1

rest = num_vowels(s[1:])
s[0] in 'aeiou':
return 1 + rest
\ else:

\
num vowels('te"') return 0 + rest

s = '"te' s[0] ->\'t'
rest = num_vowels(]'e') = 1
return 0 + 1 = 1

The final result
gets built up

on the way back
from the base case!

num_vowels(s):

S==ll.

How recursion works... 5

num_vowels('ate')
s = 'ate' s[0] -> 'a'
rest = num_vowels('te') = 1
return 1 + 1 = 2

rest = num_vowels(s[1:])
s[0] in 'aeiou':
return 1 + rest
else:

return 0 + rest

result: 2

Recursively Raising a Number to a Power

power(b, p):

""" returns b raised to the p power

inputs: b is a number (int or float)
P 1S a non-negative 1nteger

base case

* Ask yourself:

When can | determine bP without determining
a smaller power?

How could I use anything smaller than bP
to determine bP?

Recursively Raising a Number to a Power

power(b, p):

""" returns b raised to the p power

inputs: b is a number (int or float)
P 1S a non-negative 1nteger

p == 0: # base case
return 1

pow_rest = power(b, p-1)
return b * pow_rest

* Ask yourself:

When can | determine bP without determining
a smaller power?

How could I use anything smaller than bP
to determine bP?

power(b, p):

How recursion works... p == 1
power(3, 3) :
b =3, p = pow_rest = power (b, p-1)
power(3, 2)
b =3, p=2
pow_rest = power(3, 1)
4 different
stack frames,
p_oge:(g ;)= each with its own
pow_rest = power(3, 0) 9 [P EIE [PENLTEET

power(3, 0)
b =3, p =
base case!
return 1

power(b, p):

How recursion works... p == 1
power(3, 3) :
b =3, p-= pow_rest = power (b, p-1)
power(3, 2)
b =3, p=2
pow_rest = power(3, 1)
4 different
stack frames,
p_oge:(g ;)= each with its own
pow_rest = power(3, 0) =1 9 o [P B ENLIFEETE
!

power(3, 0)
b =3, p =
base case!
return 1

power(b, p):

How recursion works... P == 1
power(3, 3) :
b =3, p = pow_rest = power(b, p-1)
pow_rest = wer(3, 2) b * pow_rest
power(3, 2)
b=3,p =2
pow_rest = power(3, 1) The final result
gets built up
on the way back
power(3, 1) from the base case!
b =3, p =
pow_rest = power(3, 0) =1
return _}* 1T = 3
/)
b pow_rest

power(b, p):

How recursion works... P == 1
power(3, 3) :
b =3, p = pow_rest = power (b, p-1)
pow_rest = wer(3, 2) b * pow_rest
power(3, 2)
b =3, p=2
pow_rest = power(3, 1) =3 The final result
\ gets built up
\ on the way back
P_O‘g@r(g 1) from the base case!
) p)
pow_rest = power(3, 0) =1
return 3 *1 = 3

How recursion works...

power(3, 3)

b=3,p=3
pow_rest = power(3, 2)
power(3, 2)
b =3, p =
pow_rest = power(3, 1) =3
return 3*3 =9

power(b, p):

p==
1

pow_rest = power (b, p-1)
b * pow_rest

The final result
gets built up

on the way back
from the base case!

How recursion works...

power(3, 3)
b =3, p =
pow_rest = wer(3, 2)=9
\

power(3, 2)
b=3,p
pow_rest
return 3*3

2
PO

wer
9

(

, 1)

3

power(b, p):

p==
1

pow_rest = power (b, p-1)
b * pow_rest

The final result
gets built up

on the way back
from the base case!

power(b, p):

How recursion works... p == ‘1

power(3, 3) :
b=23,p=3 pow_rest = power (b, p-1)
pow_rest = power(3, 2) =9 b * pow_rest

return 3*9 27

result: 27

Debugging with pdb

Debugging the simple way:

X = my_function()

print(x) # use print to see variable contents
Debugging the interactive way:

$ python3 -m pdb my_function.py

Or...

import pdb

pdb.set_trace() # use "breakpoints” to stop
execution

Debugging with pdb

pdb provides an interactive debugging session.

pdb commands:
® (:continue execution

e w: shows the context of the current line it is executing.

e a: print the argument list of the current function

e s: Execute the current line and stop at the first possible
occasion.

e n: Continue execution until the next line in the current

function is reached or it returns.

https://docs.python.org/3.2 /library/pdb.html

https://docs.python.org/3.2/library/pdb.html

