Lecture 04

More Iteratlon Nested Loops

Meet UTA Jarrett’s dog Greta, lying in her “nest”

Indefinite Loops

Chase talil

Almost got it...

Based in part on notes from the CS-for-All curriculum
developed at Harvey Mudd College

So far: Two Types of for Loops

vals = [3, 15, 17, 7]

="

X

def sum(vals):
result = 0
for x in vals:
result += x
return result

element-based loop

vals[0] vals[l]vals[2] vals[3]

vals = [3, 15, 17, 7]

def sum(vals):

result =0

for 1 in range(len(vals)):
result += vals[i]

return result

index-based loop

Both are examples of definite loops (i.e., fixed number of iterations)

Indefinite Loops

* Use an indefinite loop when the # of repetitions you need is:
* not obvious or known

* impossible to determine before the loop begins, e.g.,
 Finding an element
« Computing an estimate up to some error bound

« Playing a game of rock, paper, scissors (as
opposed to one round)

* Toyproblem: print_multiples(n, bound)
 should print all multiples of n that are less than bound
e output for print_multiples(9, 100):
9 18 27 36 45 54 63 72 81 90 99

Rock, Paper, Scissors, Lizard, Spock

Indefinite Loop for Printing Multiples

while loops are how you code indefinite loops in Python:

def print_multiples(n, bound):

mult = n

while mult < bound:
print(mult, end=" ")
mult = mult + n

print()

while Loops

while <loop test>:
<body of the loop>

Steps:

1. evaluate the loop test
(a boolean expression)

2. ifit's True, execute the ~
statements in the body, Eeayicrinsioos
and go back to step 1 L

3. ifit's False, skip the
statements in the body
and go to the statement
after the loop ‘

[next statement

Tracing a while Loop

* Let's trace the loop for print_multiples(15, 70):

mult = n n bound
while mult < bound:

print(mult, end=" *)— Prints everything on the same line
mult = mult + n with spaces in between! Neat!

print()

mult < bound output thus far mult

Tracing a while Loop

* Let's trace the loop for print_multiples(15, 70):

mult = n n bound
while mult < bound:

print(mult, end=" ")
mult = mult + n

print()
mult < bound output thus far mult
15
15 < 70 (True) 15 30
30 < 70 (True) 15 30 45
45 < 70 (True) 15 30 45 60
60 < 70 (True) 15 30 45 60 75
75 < 70 (False)

so we exit the loop and print()

Important!

In general, awhile loop's test includes a key "loop variable”.

We need to update that loop variable in the body of the loop.

Failing to update it can produce an infinite loop!

Recall the loop in print_multiples:

mult = n
while mult < bound:
print(mult, end=" ")
mult = mult + n

What is the loop variable?
Where is it updated?

Important!

In general, awhile loop's test includes a key "loop variable”.

We need to update that loop variable in the body of the loop.

Failing to update it can produce an infinite loop!

Recall the loop in print_multiples:

mult = n
while mult < bound:
print(mult, end=" ")
mult = mult + n

What is the loop variable? mult
Where is it updated? In the body of the loop

Important!

In general, awhile loop's test includes a key "loop variable”.
We need to update that loop variable in the body of the loop.
Failing to update it can produce an infinite loop!

Showing every iteration makes progress towards making the
while loop condition false is one way to show a while loop will
terminate

Factorial Using a while Loop

* We don't need an indefinite loop, but we can still use while!

fac(n):
result = 1
n > 0:
result *= n
what do we need here?

result

 Let'strace fac(4):

n n >0 result

Factorial Using a while Loop

* We don't need an indefinite loop, but we can still use while!

fac(n):
result = 1
n > 0:
result *= n
n=n-1
result

 Let'strace fac(4):

n n >0 result

Factorial Using a while Loop

* We don't need an indefinite loop, but we can still use while!

fac(n):
result = 1
n > 0:
result *= n
n=n-1
result

 Let'strace fac(4):

n n >0 result

4 1

4 4 > 0 (True) 1*4 = 4

3 3 >0 (True) 4*3 = 12
2 2 >0 (True) 12*%2 = 24
1 1 >0 (True) 24*1 = 24
0 0 > 0 (False)

so we exit the loop and return 24

Factorial Four Ways!

recursion

def fac(n):
if n ==
return 1
else:
rest = fac(n-1)
return n * rest

map

def fac(n):
return reduce(lambda x,y ~
range(1,max(2,n+1)))

for loop

def fac(n):
result = 1
for x in range(1, n+1):
result *= x
return result

while loop

def fac(n):
result = 1
while n > O:
result *= n
n=n-1
return result

Extreme Looping!

e What does this code do?

print('It keeps')

print(:going and')

print('Phew! Done!")

Extreme Looping!

e What does this code do?

print('It keeps')

print('going and")
print('Phew! Done!") # never gets here!
* An infinite loop!

Use Ctrl-C to stop a program inside python

Use W-F2 to stop a program in PyCharm

Breaking Out of A Loop

random

print('Help!")
random.choice(range(10000)) == 111:
break
print('Let me out!"')

('At last!')

 What are the final two lines that are printed?

Breaking Out of A Loop

random

print('Help!")
random.choice(range(10000)) == 111:
break
print('Let me out!"')

('At last!')

 What are the final two lines that are printed?

Help!
At last!

* How could we count the number of repetitions?

Counting the Number of Repetitions

random
count = 1

print('Help!')
random.choice(range(10000)) == 111:

print('Let me out!"')
count += 1

('At last! It took', count, 'tries to
escape!’)

Important!

In general, awhile loop's test includes a key "loop variable”.
We need to update that loop variable in the body of the loop.
Failing to update it can produce an infinite loop!

Can rely on a statistical argument (e.g., rock, paper, scissors)

Counting the number of iterations and exiting after a maximum
has been reached is a safer way to loop indefinitely

Counting the Number of Repetitions

random

count = 1
count<=5000:
print('Help!")
random.choice(range(10000)) == 111:

print('Let me out!"')
count += 1

('At last! It took', count, 'tries to
escape!’)

How many values does this loop print?

a = 40 a > 2 a prints
a > 2.
a =a//l 2
print(a - 1)

2
3
4
5

m Y aw»

none of these

d

m Y aw»

How many values does this loop print?

= 40
a > 2:
a =al//l 2
print(a - 1)

2
3
4
5

none of these

a > 2

True
True
True
True
False

a prints
40

20 19

10 9

5 4

2 1

mo 0w

For what inputs does this function return True?

mystery(n):
n !=1:
n % 2 1=

n=n1// 2

odd numbers
even numbers
multiples of 4
powers of 2
none of these

0:

Try tracing these two cases:
mystery(12) mystery(8)

n N

12 8

m Y aw»

For what inputs does this function return True?

mystery(n): Try tracing these two cases:
n t=1: mystery(12) mystery(8)
n %2 !'=0: n n
12 8
n=n1// 2 6 4
3 2
False 1
True

odd numbers
even numbers
multiples of 4
powers of 2
none of these

Wesley says it's break time so it's break time

Nested Loops!

for y 1in range(84):
for m in range(12):
for d 1n range() :
for h in range(24):
for mn in range(60):
for s 1n range(60):
tick()

29

Nested Loops!

e Nested Loops are loops where a loop appears
inside the body of another loop.
e The loop inside the body is called the inner
loop. The other is called the outer loop.
e The inner loop completes all passes for a
single pass of the outer loop
e This is very useful for many types of
algorithms, especially with data that has
more than one dimension.

Repeating a Repetition!

1 .range(3):

range(4): , L
;J)rint(i,gjg)}/nner/oop outer loop

00

1

Repeating a Repetition!

range(3): # 0, 1
J range(4): # 0, 1

print(i, j)

7
7

2,

3

o O

- O

1

Repeating a Repetition!

range(3): # 0, 1
J range(4): # 0, 1

print(i, j)

7
I

2,

3

o O O
N — O

1

Repeating a Repetition!

range(3): # 0, 1
J range(4): # 0, 1

print(i, j)

2
2, 3

o O O O

wNn-—-O0O

1

Repeating a Repetition!

range(3): # 0, 1
J range(4): # 0, 1

print(i, j)

7
7

2,

3

_ e A L OO0 0
WN—-0WN-O0

1

Repeating a Repetition!

range(3): # 0, 1

for j in range(4): # 0, 1

print(i, j)

7
7

2,

3

NMNMVMVMNMNDNA~—2 22— 22000 O0o

WN=--O0OWN-—- 0 WN-—-O0

1

Repeating a Repetition!

range(3): # 0, 1

for j in range(4): # 0, 1

print(i, j)

, 2
, 2

/

3

Repeating a Repetition!

1 range(3):
J range(4): ,
orint(i, j) inner loop - outer loop
print('---")

N MNMNDMNMNDNI A OO0 O O

WwWwnN- O WN-—-~001 Wh-—-=O

Repeating a Repetition!

1 .range(3):

] range(4): ,
orint(i, j) inner loop

print('---")

- outer loop

m Y aw»

How many lines are printed?

for 1 1n range(5):

24
35

for j in range(7):
print(i, j)

How many lines are printed?

for 1 1n range(5):
for j 1n range(7):
print(i, j)

5

14

24

35 = 5*7 executions of inner code block

full output:

ouphwNnN-_LrOOUPAPWN-_~rOCOUURAPRWN-_LrOCOOUDRWN-_rOOULLDAARWN-—-O

AR PEPPRAPPRPWWWWWWLWWNNNNNNN-_, A A QA Q000000 O0

Tracing a Nested for Loop
for i in range(5): # [0,1,2,3,4]

for j in range(i):
print(i, j)

1 range(i)] Vvalue printed

N = O |-

Tracing a Nested for Loop

for i in range(5): # [0,1,2,3,4]
for j in range(1i):
print(i, j)

range(i) 1 value printed

[] none nothing (we exit the inner loop)

[0] 0 10

[0,1] 0 2 0
1 2 1

[0,1,2] 0 30 full output:
1 31
2 3 2

[0,1,2,3] 0 4 0
1 4 1
2 4 2
3 4 3

ArPRArPRAPWWWNN-=-
WN - ON—-~ 0 —0O0

Second Example: Tracing a Nested for Loop

for i in range(4):
for j in range(i, 3):
print(i, j)
print(j)

1 range(i, 3) 1 value printed

Second Example: Tracing a Nested for Loop

for i in range(4): # [0, 1, 2, 3]
for j in range(i, 3):
print(i, j)
print(j)
would go here next
i1 range(i, 3) il value printed full output:
0O [0, 1, 2] 0 00 00
1 0 1 0 1
2 0 2 0 2
2 2
1T [1, 2] 1 11 11
2 1 2 19
2
2 [2] 2 2 2 2
2 2 2
3 [1], sobody of inner loop doesn't execute 2
2 2

Side Note: Staying on the Same Line When
Printing
» By default, print puts an invisible newline character
at the end of whatever it prints.
* causes separate prints to print on different lines

« Example: What does this output?

1 range(7):
print(i1 * 5)

10
15
20
25
30

Staying on the Same Line When Printing (cont.)

* To get separate prints to print on the same line,
we can replace the newline with something else.

 Examples:

1 range(7):
print(i * 5, end="' ")

05 10 15 20 25 30
1 range(7):
print(i * 5, end="',")
0,5,10,15,20, 25,30,

Printing Patterns

row
col

range(3):
range(4):

print('#', end=" ")

print()

go to next line

row

48

Fill

row
col
pri
print()

row
© oo
R
N NN
www

in the Blank #1

range(3):
range(6):
nt(, end=" ")
go to next line

col

o ol
O 01 On

49

Fill in the Blank #1

row
col
pri
print()

row
© oo
R
N NN
www

range(3):
range(6):
nt(col, end=" ")
go to next line

col

o ol
O 01 On

50

Fill in the Blank #2

row range(3):
col range(6):
print(, end=" ")
print() # go to next line

N R O

row

col

N Rk O
N Rk O
N R O
N R O
N R O

o1

Fill in the Blank #2

row range(3):
col range(6):
print(row, end="' ')
print() # go to next line

N R O

row

col

N Rk O
N Rk O
N R O
N R O
N R O

52

m o 0w

What is needed in the blanks to get this pattern?

row range(5):
col :
print(, end=" ")
print() # go to next line

B~ WN-—-O

first blank second blank

range(row) row
range(row) col
range(5 - row) row
range(5 - row) col
none of the above

0
1
2
3

N — O

53

m o 0w

What is needed in the blanks to get this pattern?

row range(5):
col :
print(, end=" ")
print() # go to next line

B~ WN-—-O

first blank second blank

range(row) row
range(row) col
range(5 - row) row
range(5 - row) col
none of the above

0
1
2
3

N — O

o4

