
Introduction to Scientific
Computing and Problem Solving

Jason Gaudette

CSCI0040 - Spring 2019

CS4
An introductory scientific computing course

• Designed for non-CS concentration majors
• STEM oriented audience
• No prior programming experience is assumed
• No calculus or linear algebra prerequisites

2

Course Content
 Computer science is not so much the science of computers

 as it is the science of solving problems using computers.
- Eric Roberts

•This course covers:
• the process of developing algorithms to solve problems
• the process of developing computer programs

to express those algorithms
• topics from computer science and scientific computing

3

Course Goals

•Two main goals (and parts to the course)
• Introduction to Computer Science
• Topics in Scientific Computing

•Students should leave the course with
• Excellent Python and MATLAB programming skills
• As well as the ability to implement mathematical

models/concepts in their programs
• Assignments will include 2 quizzes, 11 homeworks, and

3 projects
• Please review the syllabus for grading breakdown!

4

Computer Science -vs- Programming
•There are many different fields within CS, including:

• software systems
• computer architecture
• networking
• programming languages, compilers, etc.
• theory
• artificial intelligence

•Experts in many of these fields don’t do much programming!

•However, learning to program will help you to develop
ways of thinking and solving problems used in all fields of CS.

5

A Breadth-Based Introduction
Four major units:

• weeks 0-3: computational problem solving and imperative programming

• Weeks 4-5: functional programming

• Weeks 6-7: object-oriented programming

• Weeks 9-12: MATLAB, linear algebra, image processing, and special topics

These units are designed to
• help develop your computational problem-solving skills

• including, but not limited to, coding skills

• give you a sense of the richness of computer science and scientific computing

6

A Comprehensive Introduction
•Intended for:

• Engineering, math, and physical science concentrators
• others who want a comprehensive/applied introduction
• Beginners! No programming background required

•Allow for about 10 hours of work per week
• start work early!
• utilize TA Hours, piazza, and other supporting resources

7

Preparing for Lecture

• We recommend doing the HMC reading(s) and reviewing the
slides before each lecture

• Preparing for lecture is essential!

• gets you ready for the lecture questions and discussions

• we may not cover everything in the lecture material

8

Course Website
http://cs.brown.edu/courses/cs004/

Check this site frequently for updates to syllabus, lecture
material, homework, and projects!

9

http://cs.brown.edu/courses/cs004/

Course Discussion Forum
https://piazza.com/brown/spring2019/cs4

10
Start a discussion, ask questions, or help your classmates on Piazza

https://piazza.com/brown/spring2019/cs4

Teaching Staff

• Three head TAs

• Griffin Kao, Joy Bestourous, Hersh Gupta

• Eleven UTAs

• Annie He, Alex Liu, Aryan Srivastava, Ellen Ling, Irene Rhee,
Joseph Chen, Jarrett Huddleston, Milla Shin, Pedro de Freitas,
Solomon Rueschemeyer-Bailey, Tiffany Ding

11

TA Sections
• You will sign up for a TA Section on the website by Sunday at

11:59 PM. Sections will be held Thursdays and Fridays (starting
Thursday, January 31st). Attendance is required every week
and will account for 5% of your grade!

• These sections were created to help you get started on the
assignments and offer lots of direct TA access

• Helps prevents huge lines during TA hours the night before a
homework or project is due

• Attend a Setup Section Tomorrow (11 AM - 7 PM) or Friday
(11 AM - 4 PM) in the Sunlab

• setup a CS account and remote access, install python (bring
your personal laptop if you want to set up remote access)

• verify you have everything you need to hand-in assignments

• sections start on the hour, so please show up on time!

• let us know if you can’t make any of those times 12

Assignments

• Weekly problem sets
• Homeworks will be released on Wednesdays after lecture and

will be due the following Wednesday at 4 PM
• Can submit up to 24 hours late with a 20% penalty

• No submissions accepted after 24 hours

• Projects
• Projects will be released and due on Thursday (at midnight)
• Can submit up to 72 hours late with a 20% penalty for each

day it is late

• No submissions accepted after 72 hours

• You have a combined 6 late days to use on either homeworks or
projects. Please see the syllabus on the course website for more
detail.

13

Collaboration

• Homeworks and Projects

• Must complete on your own, but you may interact with other
others at a high level - you must obey the collaboration policy!

• For both types of assignments:

• may discuss assignment requirements and main ideas with
others

• may not view another student's work

• may not show your work to another student

• don't consult solutions from past semesters

• don't consult solutions in books or online

14

Grading

1. 11 Weekly problem sets (40%), 3 projects (40%)

• your lowest weekly HW score will be dropped

2. Quizzes

• Quiz I (7.5%) - Python

• Quiz II (7.5%) - MATLAB

3. Section attendance (5%) - split over the total sections

• Includes TA session attendance, iClicker responses, etc.

15

Algorithms

• In order to solve a problem using a computer,
you need to come up with one or more algorithms.

• An algorithm is a step-by-step description of how to
accomplish a task.

• An algorithm must be:

• precise: specified in a clear and unambiguous way

• effective: capable of being carried out

16

Programming

• Programming involves expressing an algorithm in a form that
a computer can interpret.

• We will primarily use the Python programming language.

• one of many possible languages

• widely used

• relatively simple to learn

• The key concepts of the course transcend this language.

• You can use any version of Python 3

• not Python 2

• see First Steps and visit the Setup Section for details

17

18

Why Learn Programming?

19

Why Learn Programming in Python?

But First… Let’s Learn Picobot!

• Python is a relatively simple language, but it will take several
weeks to learn

• To allow for interesting problems right away,
we're going to start with something even simpler!

• Picobot!

• a special-purpose language

• controls a robot based on the
Roomba vacuum cleaner robot

20

The Picobot Environment

Picobot

area
already
covered

area not
covered

(yet!)

walls/obstacles

21

Picobot (cont.)

• Goal: to have the robot "vacuum" a small room.

• there may be obstacles!

• it can't remember where it's been

• it can only sense its immediate surroundings

https://www.cs.hmc.edu/picobot/

22

https://www.cs.hmc.edu/picobot/

The Picobot Environment (cont.)

• Rooms can have walls/obstacles "inside" the box, too!

23

Picobot (cont.)

• Goal: to have the robot ”traverse" a maze.

• Lots of twists and turns (obstacles)!

• it can't remember where it's been

• it can only sense its immediate surroundings

24

Picobot's Surroundings

• Picobot is only aware of its immediate surroundings.

• We express the surroundings using a sequence of
four characters...

N

EW

S

25

Picobot can only sense things
directly to the N, E, W, and S

For example, here the surroundings are
(obstacles to the north and west)

N

EW

S

NxWx
N E W S

Surroundings are
always in NEWS order.

Surroundings

NxWx
N E W S

Surroundings are
always in NEWS order.What are these surroundings?

NxWx
N E W S

Surroundings are
always in NEWS order.

xEWx NExS

What are these surroundings?

Which of the following describes Picobot's
surroundings in the figure below? (gray is not

an obstacle)

A. eNSw
B. xNSx
C. xNxx
D. Nxxx
E. NxxS

29

Which of the following describes Picobot's
surroundings in the figure below?

A. eNSw
B. xNSx
C. xNxx
D. Nxxx
E. NxxS

30

How many distinct
surroundings are there?

N

EW

S

Surroundings

How many distinct
surroundings are there?

N

EW

S

xxxx Nxxx xExx xxWx xxxS NExx NxWx NxxS

xEWx xExS xxWS NEWx NExS NxWS xEWS NEWS
(won’t happen)

== 16 possible …24

Surroundings

Picobot moves according to a set of rules:

Rules are applied based on picobot’s
surroundings

When I’m
blocked like this,
I want to move

N

surroundings

xxWS N

direction

If I see xxWS, Then I move North

I should move N.

Rules

Rules

Picobot can also hold still

When I’m blocked like
this,

I want to stay blocked
like this

surroundings

xEWS X

direction

If I see xEWS, Then I hold still

Wildcards

Asterisks * are wild cards. They
match walls or empty space:

x*** N

surroundings direction

EWS may be wall or empty space
N must be empty

Wild stars? You should
visit Alpha Centauri!

Rules As long as north
isn’t

blocked, go
north

surroundings

x*** N

direction

If I see North is free (no
matter what other walls

there are)

Then I move North

I should move N.

Asterisks * are wild cards. They
match walls or empty space:

Picobot checks all of its rules.

Only one rule is allowed per state and surroundings.

If it finds a matching rule, that rule runs.

C
o

m
p

u
ta

ti
o

n
al

M

o
d

el

What will this set of rules (program!) do to
Picobot?

x*** N
N*** X

surroundings direction

->
->

Picobot Programs

How can we get back down the screen?

38

Picobot's State

• Picobot's state is a single integer (from 0-99).

• It always starts in state 0.

• The state can be used to capture the current context or subtask.

• e.g., "moving east until I get to an obstacle"

• it's up to us to decide what each state means

• Surroundings + state = all Picobot knows about the world!

39

• A Picobot program is a collection of rules.

• allow us to tell Picobot what to do

• Here's one rule:

 if you are in state 0 then move one cell North
 and and
 only have obstacles stay in state 0
 on your West and South

• An X for the direction means "stay put”:

0 xxWS -> X 1

Picobot's Rules

state surroundings

0 xxWS 0N

direction
to move new state

->

40

Wildcards

• An asterisk (*) is a wildcard.

• matches either an obstacle or an empty cell.

• Here's a modified version of our earlier rule:

 if you are in state 0 then move one cell North
 and and
 only have obstacles stay in state 0
 on your West and South
(regardless of your North or East)

state surroundings

0 **WS 0N

direction
to move new state

->

NxWS xEWS NEWS
(won’t happen)

xxWS 41

Where will Picobot come to a stop?

0 ***x S 0->
0 *x*S E 0->
0 *E*S X 1->D

A B C

42

Where will Picobot come to a stop?

0 ***x S 0->
0 *x*S E 0->
0 *E*S X 1->

The rules are applied
as follows:
• first rule
• first rule
• first rule
• second rule
• second rule
• second rule
• third rule (enters state 1)
No rules for state 1,
so we're done.

D

A B C

43

What rule can we add to the original ones
so Picobot will continue until it stops at cell 5?

0 ***x S 0->
0 *x*S E 0->
0 *E*S X 1->5

A. 1 *E*S -> N 1
B. 1 *E** -> N 1
C. 1 **** -> N 1
D. more than one of the above will work 44

What rule can we add to the original ones
so Picobot will continue until it stops at cell 5?

0 ***x S 0->
0 *x*S E 0->
0 *E*S X 1->5

A. 1 *E*S -> N 1
B. 1 *E** -> N 1
C. 1 **** -> N 1
D. more than one of the above will work 45

Is this set of rules an acceptable alternative?

0 ***x S 0->
0 *x*S E 0->
0 *E*S X 1->5

0 *E** N 0->

A. Yes! (Why?)
B. No! (Why not?)

46

Is this set of rules an acceptable alternative?

0 ***x S 0->
0 *x*S E 0->
0 *E*S X 1->5

0 *E** N 0->

A. Yes! (Why?)
B. No! We have repeat rules – rules triggered

 by the same state+surroundings,
 which causes Picobot to complain.
(In this case, the new rule is triggered whenever the first
rule or third rule is.)

47

Dealing With a Maze

• What strategy do humans use?
Keep your right hand on a wall.

• Picobot can use this approach, too!

• To know where its right side is,
you need four states:

• facing north (right side is to the east)

• facing south (right side is to the west)

• facing east (right side is to the south)

• facing west (right side is to the north)

• It doesn't matter what number you assign to which state,
as long as one of them is state 0.

48

Dealing With a Maze (cont.)

• Let state 0 be facing North.

• Here's one rule for that state:

If you're facing North with the wall on your right
and nothing in front of you, go forward.
0 xE** -> N 0

• Let's write a rule for the following:

If you're facing North but you lose the wall on
your right, get over to the wall now!

49

Dealing With a Maze (cont.)

• Let state 0 be facing North.

• Here's one rule for that state:

If you're facing North with the wall on your right
and nothing in front of you, go forward.
0 xE** -> N 0

• Let's write a rule for the following:

If you're facing North but you lose the wall on
your right, get over to the wall now!

0 *x** -> E 1

• For the homework, you'll also need:

• one or two rules for hitting a dead end
when facing North

• similar sets of rules for the other three
facing directions

50

Additional Tips for Picobot problems

• Thinking about the CS questions before diving into the
programming will help!

• Imagine you’re blindfolded in the room. How would you solve
it?

• Solve it FIRST in English, then try to figure out the algorithm
(don’t worry about code!).

• For each sentence in English, that might be a different state.

• If you find that rules conflict with each other, you might need
a different state.

51

CS ~ complexity science

Information is intrinsic to every system…
How can we benefit from this information?

“construct with”

How might we measure
these rooms'
complexity?

efficiently? effectively? possibly?

Representing it … Transforming it … Measuring it

52

CS ~ complexity science

our best: 4 states, 8 rulesour best: 3 states, 6 rules

How many states
and rules are
necessary ?

How much information
does each room

contain ?

Information is intrinsic to every system…
How can we benefit from this information?

“construct with”

How might we measure
these rooms'
complexity?

efficiently? effectively? possibly?

Representing it … Transforming it … Measuring it

53

CS ~ complexity science

As a file: ~20,000 bytes!As a file: ~5000 bytes

How many states
and rules are
necessary ?

How much information
does each room

contain ?

Information is intrinsic to every system…
How can we benefit from this information?

“construct with”

How might we measure
these rooms'
complexity?

efficiently? effectively? possibly?

Representing it … Transforming it … Measuring it

54

What's Next

• Sign-up from Piazza, follow the “First Steps” to take care of other
course details https://piazza.com/class/jqbfx4epmck4yd

• Sections begin next week. Be sure to attend the Setup Section on
Thursday or Friday in order to get a CS login and setup to turn in
assignments

• Complete the reading and review these slides before the next
lecture

• Lectures slides will be posted on the website

• Homework 0

• Posted on the website, due next Wednesday

• many opportunities for help!

• Piazza, Peers (while respecting the Collaboration Policy)

• Setup Section, Assigned Section, Open Hours 55

https://piazza.com/class/jqbfx4epmck4yd

Extra Practice: Where will it stop now?

0 ***x S 0->
0 *x*S E 1->
0 *E*S X 1->D

A B C

56

Extra Practice: Where will it stop now?

0 ***x S 0->
0 *x*S E 1->
0 *E*S X 1->

The rules are applied
as follows:
• first rule
• first rule
• first rule
• second rule (enters 1)
No rules for state 1,
so we're done.

D

A B C

57

Take-Home Challenge!

0 ***x S 0->
0 *x*S E 0->
0 *E*S X 1->

• What 2 rules could you add so that Picobot will still travel the
same path shown above, but then continue to cell 6 and stop?

6

58

