Announcements
Review

- Bayes classifier, that achieves minimal risk (Bayes risk):

\[h^*(x) = \arg\max_c p(y = c | x) = \arg\max_c p(x | y = c) P_c \]

- Discriminant analysis: define \(\delta_c \triangleq \log p(x | c) P_c \), then

\[h^*(x) = \arg\max_c \delta_c(x). \]

- 2 Gaussians, equal covariances: linear discriminant analysis (LDA).
- 2 Gaussians, general covariances: quadratic discriminant analysis.

- Generative models: assume a parametric form \(p(x|c; \theta) \), estimate \(\theta \) from data, derive Bayes classifier pretending the estimated distribution is correct.
Generative models

- Operate under the “pretense” that $\mathbf{x} \sim p(\mathbf{x}; \theta)$.

- Under that assumption we depend on the estimation to infer the parameters θ.

- Examples we have seen so far:
 - The additive noise model for regression.
 - Modeling class-conditionals by Gaussians in classification.
Estimation theory

• An estimator $\hat{\theta}_N$ of a parameter θ is a function that takes the data $X_N = \{x_1, \ldots, x_N\}$ and produces an estimated value $\hat{\theta}$.

 – Estimator $\hat{\theta}_N$ is a procedure; an estimate $\hat{\theta}$ is a value obtained by that procedure.

 – E.g., a maximum likelihood estimator for a 1D Gaussian mean, given X_N, produces an estimate (number) $\hat{\mu}$.

• The estimate $\hat{\theta}$ is a random variable since it is based on a randomly drawn set X_N.

• We can talk about $E[\hat{\theta}|X_N]$ and $\text{var}(\hat{\theta}|X_N)$.

 (When θ is a vector, we have $\text{Cov}(\hat{\theta})$.)

 – Analysis done assuming that the data is distributed according to $p(x; \theta)$!
Bias of an estimator

• The bias of an estimator $\hat{\theta}_N$ is defined as

$$\text{bias}(\hat{\theta}_N) \triangleq E_{X^N} \left[\hat{\theta}_N - \theta \right].$$

i.e. the expected deviation of the estimate from the correct parameter (taken over all possible sets of N examples).

• An unbiased estimator therefore satisfies $E_{X^N} \left[\hat{\theta}_N \right] = \theta$.

• Example: ML estimators of 1D Gaussian parameters

$$\hat{\mu}_{ML} = \frac{1}{N} \sum_i x_i, \quad \hat{\sigma}^2_{ML} = \frac{1}{N} \sum_i (x_i - \hat{\mu})^2.$$
Bias of an estimator

• The bias of an estimator $\hat{\theta}_N$ is defined as

$$\text{bias}(\hat{\theta}_N) \triangleq E_{X_N} [\hat{\theta}_N - \theta].$$

i.e. the expected deviation of the estimate from the correct parameter (taken over all possible sets of N examples).

• An unbiased estimator therefore satisfies $E_{X_N} [\hat{\theta}_N] = \theta$.

• Example: ML estimators of 1D Gaussian parameters

$$\hat{\mu}_{ML} = \frac{1}{N} \sum_i x_i, \quad \hat{\sigma}^2_{ML} = \frac{1}{N} \sum_i (x_i - \hat{\mu})^2.$$

• Turns out $\hat{\mu}$ is unbiased;
Bias of an estimator

- The bias of an estimator $\hat{\theta}_N$ is defined as
 \[
 \text{bias}(\hat{\theta}_N) \triangleq E_{X_N} \left[\hat{\theta}_N - \theta \right].
 \]
 i.e. the expected deviation of the estimate from the correct parameter (taken over all possible sets of N examples).

- An unbiased estimator therefore satisfies $E_{X_N} \left[\hat{\theta}_N \right] = \theta$.

- Example: ML estimators of 1D Gaussian parameters
 \[
 \hat{\mu}_{ML} = \frac{1}{N} \sum_i x_i, \quad \hat{\sigma}^2_{ML} = \frac{1}{N} \sum_i (x_i - \hat{\mu})^2.
 \]
 \[
 \text{Turns out } \hat{\mu} \text{ is unbiased; however, } \hat{\sigma}_{ML} \text{ underestimates the variance in the data!}
 \]
 \[
 E \left[\hat{\sigma}^2_{ML} \right] = \frac{N - 1}{N} \sigma^2.
 \]
Consistency of an estimator

• If we have enough data, bias may not be so much of a problem.

• An estimator $\hat{\theta}_N$ is consistent if

$$\lim_{N \to \infty} \hat{\theta}_N = \theta.$$

Note: this limit is in probability.

• So, $\hat{\sigma}^2_{ML} = \frac{1}{N} \sum_i (x_i - \mu_{ML})^2$, even though biased, is a consistent estimator of σ^2.
Bias-variance dilemma

- We can associate squared loss with the error $\hat{\theta} - \theta$.

- Denote $\bar{\theta}_N = E[\hat{\theta}_N]$. Then, the expected error:

 \[
 E[(\hat{\theta}_N - \theta)^2] = E[(\hat{\theta}_N - \bar{\theta}_N + \bar{\theta}_N - \theta)^2]
 \]

 \[
 = E[(\hat{\theta}_N - \bar{\theta}_N)^2] + 2(\bar{\theta}_N - \theta)E[\hat{\theta}_N - \bar{\theta}_N] + E[(\bar{\theta}_N - \theta)^2]
 \]

 \[
 = (\bar{\theta}_N - \theta)^2 + E[(\hat{\theta}_N - \bar{\theta}_N)^2]
 \]

 \[
 = \text{bias}^2(\hat{\theta}_N) + \text{var}(\hat{\theta}_N).
 \]

- This is the same phenomenon that we saw for regression:
 - The bias^2 term corresponds to structural error of the model,
 - the variance is the approximation error due to finite data.
Data complexity of estimation

- Two kinds of complexity are relevant to learning/estimation algorithms:
 - Computational (time) complexity: more data \Rightarrow higher cost
Data complexity of estimation

- Two kinds of complexity are relevant to learning/estimation algorithms:
 - Computational (time) complexity: more data ⇒ higher cost
 - Data complexity: less data ⇒ higher cost.

- Consider the ML estimate of the Gaussian in \mathbb{R}^d.
 - mean: need to fit d parameters.
 - Covariance:
Data complexity of estimation

• Two kinds of complexity are relevant to learning/estimation algorithms:
 – Computational (time) complexity: more data ⇒ higher cost
 – Data complexity: less data ⇒ higher cost.

• Consider the ML estimate of the Gaussian in \mathbb{R}^d.
 – mean: need to fit d parameters.
 – Covariance: $d + d(d - 1)/2$ parameters.

• Rule of thumb: need 10-30 examples per parameter.
Model complexity

- Intuitively, the complexity of the model can be measured by the number of “degrees of freedom” (independent parameters).
 - The more complex the model, the more data we need to fit it
 ⇒ For a given number of points, a more complex model is more likely to overfit.
 - Example: polynomial regression of order m.

\[m = 1, \ 2 \text{ parameters} \quad m = 10, \ 11 \text{ parameters} \]

- This is an issue only because of finite training data!
Dealing with model complexity

- We have already seen one way to deal with overfitting: cross-validation.

- Another way is to restrict the complexity of the model.

- For the case of d-variate Gaussian, we can restrict the covariance matrix. We need to estimate d parameters for μ plus:

\[
\Sigma = \begin{bmatrix}
\sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\
\sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2d} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1d} & \cdots & \sigma_{2d} & \sigma_d^2
\end{bmatrix}
\]

param. \quad d + d(d - 1)/2
Dealing with model complexity

- We have already seen one way to deal with overfitting: cross-validation.
- Another way is to restrict the complexity of the model.
- For the case of d-variate Gaussian, we can restrict the covariance matrix. We need to estimate d parameters for μ plus:

$$
\Sigma = \begin{bmatrix}
\sigma_1^2 & \sigma_{12} & \ldots & \sigma_{1d} \\
\sigma_{12} & \sigma_2^2 & \ldots & \sigma_{2d} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{1d} & \ldots & \ldots & \sigma_d^2
\end{bmatrix}
$$

$$
\begin{bmatrix}
\sigma_1^2 & 0 & \ldots & 0 \\
0 & \sigma_2^2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & \sigma_d^2
\end{bmatrix}
$$

| # param. | $d + d(d - 1)/2$ | d |
Dealing with model complexity

- We have already seen one way to deal with overfitting: cross-validation.

- Another way is to restrict the complexity of the model.

- For the case of d-variate Gaussian, we can restrict the covariance matrix. We need to estimate d parameters for μ plus:

$$\Sigma = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1d} & \cdots & \sigma_{d1} & \sigma_d^2 \end{bmatrix} \begin{bmatrix} \sigma_1^2 & 0 & \cdots & 0 \\ 0 & \sigma_2^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \sigma_d^2 \end{bmatrix} \sigma^2 I$$

| # param. | $d + d(d - 1)/2$ | d | 1 |