CS195-5: Introduction to Machine Learning
Lecture 35

Greg Shakhnarovich

December 8, 2006
Announcements

- Next lectures in the usual location (Lubrano).
 - Monday 12/11: advanced applications.
 - Wednesday 12/13: final review.
 - Final: Monday 12/18, Wilson 101, 9am-noon.
 - 200 level projects due December 31st.
Review: directed graphical models

\[p(A)p(B)p(C | A, B)p(E | B, C)p(D | E, C) \]
Review: inference

- Induced dependence/independence
- Explaining away
Review: the Bayes Ball algorithm
What have we covered?

- Supervised learning: regression and classification.
- Unsupervised learning: clustering, dimensionality reduction, estimation.
- Probabilistic models: Naive Bayes, mixture models, Markov and HMM,
- Graphical models
- Theory: bias/variance, max-margin classifiers.
Evaluation in machine learning

- How do you evaluate a classification or regression method?
 - How do we compare two algorithms/models?
 - What do we report?

- Idea 1: training set.
Evaluation in machine learning

• How do you evaluate a classification or regression method?
 – How do we compare two algorithms/models?
 – What do we report?

• Idea 1: training set.

• Idea 2 (better): cross-validation.
Evaluation in machine learning

- How do you evaluate a classification or regression method?
 - How do we compare two algorithms/models?
 - What do we report?

- Idea 1: training set.

- Idea 2 (better): cross-validation. Problems:
 - ignores dependencies across folds,
 - overutilizes the data.
Evaluation in machine learning

- How do you evaluate a classification or regression method?
 - How do we compare two algorithms/models?
 - What do we report?

- Idea 1: training set.

- Idea 2 (better): cross-validation. Problems:
 - ignores dependencies across folds,
 - overutilizes the data.

- Idea 3 (if can afford it): test set.
Evaluation on a test set

• Suppose you trained a classifier $A \Rightarrow$ on 10 examples, $\hat{\epsilon}_A = 0.1$

• Another classifier $B \Rightarrow$ test error $\hat{\epsilon}_B = 0.2$

• Which one is better?
Evaluation on a test set

- Suppose you trained a classifier \(A \Rightarrow \) on 10 examples, \(\hat{\epsilon}_A = 0.1 \)
- Another classifier \(B \Rightarrow \) test error \(\hat{\epsilon}_B = 0.2 \)
- Which one is better? Naive approach: \(A \) since \(\hat{\epsilon}_A < \hat{\epsilon}_B \).
- What if in reality, the expected risk is \(\epsilon_A = 0.3 \) and \(\epsilon_B = 0.015 \)?
 - Probability of observing \(\hat{\epsilon}_A \) is

\[
\text{Binomial}_{0.3}(1, 10;) = 0.1211,
\]
Evaluation on a test set

• Suppose you trained a classifier $A \Rightarrow$ on 10 examples, $\hat{\epsilon}_A = 0.1$

• Another classifier $B \Rightarrow$ test error $\hat{\epsilon}_B = 0.2$

• Which one is better? Naive approach: A since $\hat{\epsilon}_A < \hat{\epsilon}_B$.

• What if in reality, the expected risk is $\epsilon_A = 0.3$ and $\epsilon_B = 0.015$?

 – Probability of observing $\hat{\epsilon}_A$ is

 $$Binomial_{0.3}(1, 10;) = 0.1211,$$

 and probability of observing $\hat{\epsilon}_B$ is

 $$Binomial_{0.1}(2, 10;) = 0.1937.$$
Evaluation on a test set

- Suppose you trained a classifier $A \Rightarrow$ on 10 examples, $\hat{\epsilon}_A = 0.1$

- Another classifier $B \Rightarrow$ test error $\hat{\epsilon}_B = 0.2$

- Which one is better? Naive approach: A since $\hat{\epsilon}_A < \hat{\epsilon}_B$.

- What if in reality, the expected risk is $\epsilon_A = 0.3$ and $\epsilon_B = 0.015$?
 - Probability of observing $\hat{\epsilon}_A$ is

 $Binomial_{0.3}(1, 10;) = 0.1211$,

 and probability of observing $\hat{\epsilon}_B$ is

 $Binomial_{0.1}(2, 10;) = 0.1937$.

- So, we could get the observed results with reasonably high probability even if in fact A had expected risk twice that of B.
Hypothesis testing

• The null hypothesis \(H_0 : \epsilon_A = \epsilon_B \).

• The alternative hypothesis: \(H_1 : \epsilon_A < \epsilon_B \).
 – We want to reject \(H_0 \) (in favor of \(H_1 \)).
 – Note: if we can reject \(H_0 \) we can also reject \(H' : \epsilon_A < \epsilon_B \).

• Many, many tests exist in statistics.

• Two types of error in a hypothesis test:
 – Type I: reject \(H_0 \) when \(H_0 \) is true.
 – Type II: fail to reject \(H_0 \) when \(H_1 \) is true.
\[H_0 : \epsilon_A = \epsilon_B \quad \text{and} \quad H_1 : \epsilon_A > \epsilon_B. \]

- Typically, a test is based on a statistic \(\hat{\theta} \) (function of the data).
 - e.g., \(\hat{\theta} = \text{epsilon}_A - \hat{\epsilon}_B. \)

- The \(p \)-value of the test on our data: the probability of observing a value of the test statistic the same or more extreme than that actually observed, under the null-hypothesis \(H_0 \).

- Standard interpretation:

 \[
 \begin{align*}
 p < .01 & \quad \text{very strong evidence against } H_0; \\
 .01 < p < .05 & \quad \text{strong evidence against } H_0; \\
 .05 < p < .1 & \quad \text{weak evidence against } H_0; \\
 p > .1 & \quad \text{no evidence.}
 \end{align*}
 \]
Informal assessment of results

• Suppose you have (test) regression errors e_1, \ldots, e_N with method A and e'_1, \ldots, e'_N with method B.

• This calls for a \textit{paired} test (samples are not independent).

• An obvious statistic: the mean difference $\frac{1}{N} \sum_i (e_i - e'_i)$

• Matlab’s boxplot:
Significance and importance

- Note that the test typically depends on N.
 - If $N = 3$, $\hat{\epsilon}_A = 1/3$ and $\hat{\epsilon}_B = 2/3$, not significant.
 - If $N = 10^6$ and $\hat{\epsilon}_A = 0.03$ and $\hat{\epsilon}_B = 0.06$, probably significant.

- Note: statistically significant \neq important!
What have we not covered?

• Inference in graphical models
 – Exact: local message passing algorithm
 – Approximate: sampling, loopy belief propagation.

• Undirected models: Markov random fields

• Example: image models
Structure learning

- We have assumed that the structure (edges) of the GM is given.
- We can learn it from data
 - A model selection task.
 - The best explanation: fully connected graph.
 - Need to penalize it by model complexity.
- (Non-linear) manifold learning
 - PCA recovers an “interesting” linear subspace of the data.
 - Many methods target non-linear subspaces.
Semi-supervised learning

- Small labeled data set $\sim p(x, y) = p(x)p(y|x)$;

- Large set of unlabeled data $\sim p(x)$.

- We can use the unlabeled data to improve the model/estimates
 - Estimate density, and use the result to assign weights to labeled examples.
 - Transduction: predict the labels for the unlabeled data, and re-train the classifier pretending these are correct.
Active learning

- We are allowed to query the label of unlabeled examples.
- Labeling is expensive.
 - Recall: in linear regression,
 \[
 \hat{w} \sim \mathcal{N}(w; w^*, \sigma^2 (X^T X)^{-1})
 \]
 - Basic idea: query examples whose label will contribute most to your ability to predict future labels.
Online learning

- We observe examples in order, and start learning right away
- With each example (or small batch of examples) need to update the model
 - Often need to make predictions quickly!
- Applications:
 - Financial time series prediction
 - Adaptive systems
 - Robot exploration of environment
Reinforcement learning

• “Reinforcement learning is learning what to do—how to map situations to actions—so as to maximize a numerical reward signal.” [Sutton & Barto]

• Main elements:
 – Actions that can be taken
 – Policy: mapping from state of the environment to action.
 – Reward function: mapping state-action pairs to value.

• Objective: through trial and error, learn a policy that will maximize expected reward in the long run.

• Examples: many. E.g., inverted helicopter.
Theory questions

- What is learnable with a particular family of classifiers?
Theory questions

• What is learnable with a particular family of classifiers?

• Probably Approximately Correct (PAC) framework:
 – We select from a set \mathcal{H} a hypothesis h^* that achieves zero training error.
 – How large should N be so that with probability at least $1 - \delta$, the expected risk of h^* is no more than ϵ?