Announcements

- Projects: three types
 - Focused literature survey
 - A non-trivial application of ML
 - Theoretical and/or empirical analysis of an advanced ML model/algorithm.

- Write-up (up to 8 pages)

- No collaboration on projects!

- Proposal (2 page) due on or before Nov 22nd.
Review: k-means clustering

1. Initialize k means μ_1, \ldots, μ_k to random locations.
 - E.g., set to k randomly chosen distinct examples.

2. Repeat until no change in assignment:

 E-step: Assign each example to the closest mean:

 $$ y_i = \arg\min_c \|x_i - \mu_c\|. $$

 M-step: Reestimate each mean based only on examples assigned to it:

 Let $N_c = |\{x_i : y_i = c\}|$; $\mu_c = \frac{1}{N_c} \sum_{y_i = c} x_i$.

k-means example

1st iteration

3rd

5th (last)
k-means example

1st iteration

3rd

5th (last)
Plan for today

• Other clustering methods:
 – Hierarchical clustering,
 – Spectral clustering.
Vector Quantization

- We can use the cluster mean as a prototype representing all the examples assigned to the cluster.

- **Vector quantization**: construct a codebook using k-means.

- Whenever need to transmit \mathbf{x}, transmit instead the closest codebook.
 - The bits to transmit: $\log kd$ once + $\log k$ for every message.
Setting k

- How can we set k?
How can we set k? Cross-validation doesn’t work (why?)
Setting k

- How can we set k? Cross-validation doesn’t work (why?)

- The relevant statistic: *within-class dissimilarity*

 \[W_k = \sum_{c=1}^{k} \sum_{y_i = y_j = c} \| x_i - x_j \|^2. \]

- A popular (heuristic) strategy: look for an “elbow” in W_k
Setting k

- How can we set k? Cross-validation doesn’t work (why?)

- The relevant statistic: *within-class dissimilarity*

\[
W_k = \sum_{c=1}^{k} \sum_{y_i = y_j = c} \|x_i - x_j\|^2.
\]

- A popular (heuristic) strategy: look for an “elbow” in W_k
Mixture of Gaussians EM versus k-means

- k-means:
 - No probabilistic model \Rightarrow no estimated density.
 - faster to compute (only a single explanation for each data point).
 - Limited by the underlying assumption of spherical clusters

- We can bring back the covariance—get “hard EM”.
 - Still limited by the shape of the covariance (ellipsoid).

- Both EM and k-means depend on initialization (can get stuck in local optima).
 - Useful trick: run k-means and use the result to initialize EM.
Practical aspects

- Can have empty clusters
 - Take the example with highest distance to its mean, and create a new cluster.

- Many strategies for initialization
 - Start with a random example as μ_1; then,
 \[
 \mu_c = \arg\max_x \min_{j=1,\ldots,c} \|x - \mu_j\|.
 \]

- Robustness: we want to diminish the influence of outliers
 - Set a threshold on the distance;
 - Ignore top percentile of distances in the M-step.
k-medoids clustering

- A generalization of k-means for distances $D(x_1, x_2)$ other than L_2 norms
 - E.g., using L_1 makes the clustering more robust.

- Also, we often want cluster centers to be valid observations themselves ("prototypes")

- k-medoids algorithm: initialize the clusters to randomly selected examples, and iterate:

 E-step: for each $i = 1, \ldots, N$

 $$y_i = \arg\min_c D(x_i, m_c)$$

 M-step: for each cluster $c = 1, \ldots, k$

 $$i^*_c = \arg\min_i \sum_{j: y_j = c} D(x_i, x_j)$$
Hierarchical structure discovery

- In some cases we want to explore the structure of the similarities in the data beyond partitioning to k groups.

- E.g., a hierarchical structure (subclusters, sub-subclusters etc.)
Hierarchical clustering

• *Hierarchical clustering*: produce hierarchical representation, that can be depicted as a tree—dendrogram.
Bottom-up agglomeration
Agglomerative hierarchical clustering

- Denote by C^m_i the i-th cluster at level n.

- Initialize $C^N_i = \{x_i\}$.

- At level $n = N - 1, N - 2, \ldots, 1$:
 - Find two closest clusters C^{m+1}_i, C^{m+1}_j:
 \[
 D(C^{m+1}_i, C^{m+1}_j) = \max_{l,m} D(C^{m+1}_l, C^{m+1}_m)
 \]
 - Merge them: $C^n_1 = C^{m+1}_i \cup C^{m+1}_j$. For the rest of the clusters, $C^n_l = C^{m+1}_l$
Linkage schemes

- How do we measure distances between clusters (groups of examples)?
 - **Single linkage** (nearest neighbor)
 \[D(A, B) = \min_{a \in A, b \in B} D(a, b) \]
 - **Average linkage**:
 \[D(A, B) = \frac{1}{|A||B|} \sum_{a \in A} \sum_{b \in B} D(a, b) \]
 - **Complete linkage** (furthest neighbor)
 \[D(A, B) = \max_{a \in A, b \in B} D(a, b) \]
Variations on hierarchical clustering

- *Divisive* clustering: top-down partition instead of bottom-up agglomeration.

- Can apply the furthest neighbor idea:
 - Assign the first cluster to a random example;
 - At each level find the example *farthest* from the current clusters, and assign the new cluster to it.

- By cutting at some levels, we can create partition to k clusters.
What is missing?
Spectral clustering

- Suppose we have a \(N \times N \) distance matrix

- We can represent the data as a graph:
 - \(N \) vertices,
 - edges corresponding to nearest neighbors.
Random walk model

- Assign weights to edges: \(W_{ij} = \exp(-\beta \|x_i - x_j\|) \) (or zero if \(x_i \) and \(x_j \) not connected)

- The weight of a path \(x_1 \rightarrow x_2 \rightarrow \ldots \rightarrow x_n \) is

\[
W_{12} \cdot W_{23} \cdots W_{n-1,n} = \exp\left(\beta \sum_{i=1}^{n-1} \|x_i - x_{i+1}\| \right)
\]

- The idea behind spectral clustering: imagine a random walk with probability of step \(i \rightarrow j \) given by

\[
P_{ij} = \frac{W_{ij}}{\sum_l W_{il}}.
\]

 - If we start within a cluster, we will likely remain within that cluster for a long time.
Next time

Finish spectral clustering;
Dimensionality reduction.