Today

- Some announcements

- Fundamental concepts in statistical learning:
 - Empirical loss
 - Learning via empirical loss minimization
 - Empirical loss versus expected loss: overfitting and generalization

- Linear models for regression; least squares.
Announcements

• Today and Monday: in CIT 368

• Mailing list: subscribe (link on website)

• Machine Learning Reading Group: meeting every Wednesday, 1pm, CIT 506.
Linear fitting to data

- We want to fit a linear function to an observed set of points $X = [x_1, \ldots, x_N]$ with associated labels $Y = [y_1, \ldots, y_N]$.

 - Once we fit the function, we can use it to predict the y for new x.

- Find the function that minimizes sum (or average) of square distances between actual ys in the training set and predicted ones.

\[
\text{least squares (LSQ)}
\]
Linear fitting to data

• We want to fit a linear function to an observed set of points $X = [x_1, \ldots, x_N]$ with associated labels $Y = [y_1, \ldots, y_N]$.

 – Once we fit the function, we can use it to predict the y for new x.

• Find the function that minimizes sum (or average) of square distances between actual ys in the training set and predicted ones.

\[(x_i, y_i) \]

\textit{least squares (LSQ)}
Linear fitting to data

• We want to fit a linear function to an observed set of points \(X = [x_1, \ldots, x_N] \) with associated labels \(Y = [y_1, \ldots, y_N] \).

 – Once we fit the function, we can use it to predict the \(y \) for new \(x \).

• Find the function that minimizes sum (or average) of square distances between actual \(y \)s in the training set and predicted ones.

\[
\min \sum_{i=1}^{N} (y_i - f(x_i))^2
\]

\(\text{least squares (LSQ)} \)
Linear fitting to data

- We want to fit a linear function to an observed set of points \(X = [x_1, \ldots, x_N] \) with associated labels \(Y = [y_1, \ldots, y_N] \).
 - Once we fit the function, we can use it to predict the \(y \) for new \(x \).

- Find the function that minimizes sum (or average) of square distances between actual \(y \)s in the training set and predicted ones.

\[
\text{min } \sum (y_i - \hat{y}_i)^2
\]

\(\hat{y}_i \) least squares (LSQ)

The fitted line is used as a predictor.
Linear fitting to data

- We want to fit a linear function to an observed set of points \(X = [x_1, \ldots, x_N] \) with associated labels \(Y = [y_1, \ldots, y_N] \).
 - Once we fit the function, we can use it to predict the \(y \) for new \(x \).

- Find the function that minimizes sum (or average) of square distances between actual \(y \)s in the training set and predicted ones.

\[\text{minimize } \sum_{i=1}^{N} (y_i - f(x_i))^2 \]

least squares (LSQ)

The fitted line is used as a predictor.
Linear functions

- General form: \(f(x; w) = w_0 + w_1 x_1 + \ldots + w_d x_d \)

- 1D case (\(\mathcal{X} = \mathbb{R} \)): a line

- \(\mathcal{X} = \mathbb{R}^2 \): a plane

- *Hyperplane* in general, \(d \)-D case.
Notation

We will mostly stick to these throughout the course:

- x_i the i-th data point in \mathcal{X}.

 Often $\mathcal{X} \equiv \mathbb{R}^d$, so that $[x_1^{(i)}, \ldots, x_d^{(i)}]^T$

- y_i the label of the i-th data point; $y_i \in \mathcal{Y}$

- x_0, y_0 a single test point and its (unknown) label

- \mathbf{X} the $N \times d$ data matrix where i-th row is \mathbf{x}_i^T

- \mathbf{y} the label vector $\mathbf{y} = [y_1, \ldots, y_N]^T$

More to come. . .
Loss function

• Suppose target labels are in \mathcal{Y}
 – Binary classification: $\mathcal{Y} = \{-1, +1\}$
 – Regression: $\mathcal{Y} \equiv \mathbb{R}$.

• A loss function $L : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ maps decisions to costs:
 – $L(y, \hat{y})$ defines the penalty paid for predicting \hat{y} when the true value is y.

• Standard choice for classification: 0/1 loss $L_{0/1}(\hat{y}, y) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{otherwise} \end{cases}$

• Standard choice for regression: squared loss $L(\hat{y}, y) = (\hat{y} - y)^2$
Empirical loss

- We consider *parametric* function $f(x; w)$.

- The *empirical loss* of function $y = f(x; w)$ on the training set is defined as

 $$L_N(w) = \frac{1}{N} \sum_{i=1}^{N} L(f(x_i; w), y_i)$$

- LSQ minimizes the empirical loss for squared loss L.

- We care about accuracy of *predicting* labels for new examples. Why/when does empirical loss minimization help us achieve that?
A fundamental assumption in statistical learning: pairs example x/label y are drawn (sampled) from an joint probability distribution $p(x, y)$.

It’s the same (unknown!) distribution for all pairs (x, y) in both training and test data.

Empirical loss $L_N(w) = \frac{1}{N} \sum_{i=1}^{N} L(f(x_i; w), y_i)$

The ultimate goal is to minimize the expected loss, also known as risk:

$$R(w) = \mathbb{E}_{(x_0, y_0) \sim p(x, y)} [L(f(x_0; w), y_0)]$$
Loss: empirical and expected

- A fundamental assumption in statistical learning: pairs example \(x \)/label \(y \) are drawn (sampled) from an joint probability distribution \(p(x, y) \).

- It’s the same (unknown!) distribution for all pairs \((x, y)\) in both training and test data.

- Empirical loss \(L_N(w) = \frac{1}{N} \sum_{i=1}^{N} L(f(x_i; w), y_i) \)

- The ultimate goal is to minimize the expected loss, also known as risk:

\[
R(w) = E_{(x_0, y_0) \sim p(x, y)} [L(f(x_0; w), y_0)]
\]

- Expectation of a function \(g(Z) \) of a random variable \(Z \sim p(z) \):

\[
E_{Z \sim p(Z)} [g(Z)] = \int_{\Omega} g(Z) p(Z) dz
\]
Loss: empirical and expected

- Empirical loss: $L_N(w) = \frac{1}{N} \sum_{i=1}^{N} L(f(x_i, w), y_i)$

- Risk: $R(w) = E_{(x_0, y_0) \sim p(x, y)} [L(f(x_0, w), y_0)]$

- To the extent that the training set is a representative of the underlying distribution $p(x, y)$, the empirical loss serves as a proxy for the risk (expected loss).
Learning via empirical loss minimization

Recall two of the main steps in learning:

- **Modeling**: select a restricted class \mathcal{F} of hypotheses $f : \mathcal{X} \rightarrow \mathcal{Y}$
 - Linear functions, parametrized by \mathbf{w}: $\hat{y} = f(x; \mathbf{w}) = w_0 + \sum_{i=1}^{d} w_i x_i$

- **Estimation**: select a hypothesis $f^* \in \mathcal{F}$ based on training set (X, Y).
 - Find the hypothesis that minimizes empirical loss.
 - Regression by least squares fitting: $f^* \equiv f(x; \mathbf{w}^*)$ where

$$
\mathbf{w}^* = \arg\min_{\mathbf{w}} \sum_{i=1}^{N} (y_i - w_0 - \sum_{j=1}^{d} w_j x_{j}^{(i)})^2
$$

- How exactly do we set $\mathbf{w}^* = [w_0^*, w_1^*, \ldots, w_d^*]^T$?
Least squares: estimation

• We need to minimize

\[L_N(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i; w))^2 \]
Least squares: estimation

- We need to minimize

\[L_N(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i; w))^2 \]

\[= \frac{1}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x_1^{(i)} - \ldots - w_d x_d^{(i)} \right)^2 \]
Least squares: estimation

- We need to minimize

\[
L_N(w) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i; w))^2
\]

\[
= \frac{1}{N} \sum_{i=1}^{N} (y_i - w_0 - w_1 x_1^{(i)} - \ldots - w_d x_d^{(i)})^2
\]

let's look at 1D for the moment

\[
L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} (y_i - w_0 - w_1 x^{(i)})^2
\]
Least squares: estimation

• We need to minimize

\[L_N(\mathbf{w}) = \frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i; \mathbf{w}))^2 \]

\[= \frac{1}{N} \sum_{i=1}^{N} (y_i - w_0 - w_1 x_1^{(i)} - \cdots - w_d x_d^{(i)})^2 \]

let's look at 1D for the moment

\[L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} (y_i - w_0 - w_1 x^{(i)})^2 \]

• Necessary condition to minimize \(L_N \): derivatives w.r.t. \(w_0 \) and \(w_1 \) must be zero.
Least squares: estimation

\[L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

\[\frac{\partial}{\partial w_0} L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial w_0} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]
Least squares: estimation

\[L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

\[\frac{\partial}{\partial w_0} L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial w_0} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

\[= \frac{1}{N} \sum_{i=1}^{N} 2 \left(y_i - w_0 - w_1 x^{(i)} \right) \]
Least squares: estimation

\[L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

\[
\frac{\partial}{\partial w_0} L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial w_0} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \\
= \frac{1}{N} \sum_{i=1}^{N} 2 \left(y_i - w_0 - w_1 x^{(i)} \right) \cdot (-1)
\]
Least squares: estimation

\[L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

\[
\frac{\partial}{\partial w_0} L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial w_0} \left(y_i - w_0 - w_1 x^{(i)} \right)^2
\]

\[= \frac{1}{N} \sum_{i=1}^{N} 2 \left(y_i - w_0 - w_1 x^{(i)} \right) \cdot (-1) \]

\[= -\frac{2}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right) \]
Least squares: estimation

\[L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

\[\frac{\partial}{\partial w_0} L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial w_0} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

\[= \frac{1}{N} \sum_{i=1}^{N} 2 \left(y_i - w_0 - w_1 x^{(i)} \right) \cdot (-1) \]

\[= -\frac{2}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right) = 0. \]
Least squares: estimation

\[L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

\[\frac{\partial}{\partial w_0} L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \frac{\partial}{\partial w_0} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

\[= \frac{1}{N} \sum_{i=1}^{N} 2 \left(y_i - w_0 - w_1 x^{(i)} \right) \cdot (-1) \]

\[= -\frac{2}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right) = 0. \]

- \(y_i - w_0 - w_1 x^{(i)} \) is the prediction error on the \(i \)-th example.

- \(\Rightarrow \) Necessary condition for optimal \(w \) is that the errors have zero mean.
 - Otherwise we could reduce \(L_N \) even further!
Least squares: estimation

\[L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

Similarly,

\[
\frac{\partial}{\partial w_1} L_N(w_0, w_1) = -\frac{2}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right) x^{(i)}
\]

\[(2) \]
Least squares: estimation

\[L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

Similarly,

\[\frac{\partial}{\partial w_1} L_N(w_0, w_1) = -\frac{2}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right) x^{(i)} = 0. \]
Least squares: estimation

\[L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

Similarly,

\[\frac{\partial}{\partial w_1} L_N(w_0, w_1) = -\frac{2}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right) x^{(i)} = 0. \]

- Second necessary condition: errors are uncorrelated with the data! (And with any linear function of the data)
Least squares: estimation

\[L_N(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right)^2 \]

Similarly,

\[\frac{\partial}{\partial w_1} L_N(w_0, w_1) = -\frac{2}{N} \sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right) x^{(i)} = 0. \]

• Second necessary condition: errors are uncorrelated with the data! (And with any linear function of the data)

• Two unknowns \(w_0, w_1 \) and two equations, linear in \(w_0, w_1 \) \(\Rightarrow \) always a solution.

\[\sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right) x^{(i)} = 0, \quad (1) \]

\[\sum_{i=1}^{N} \left(y_i - w_0 - w_1 x^{(i)} \right) = 0 \quad (2) \]
Linear regression and overfitting

- What happens when we only have a single data point?
Linear regression and overfitting

- What happens when we only have a single data point?
 - Ill-posed problem: an infinite number of lines pass through the point and produce “perfect” fit.

- Two points...
Linear regression and overfitting

- What happens when we only have a single data point?
 - Ill-posed problem: an infinite number of lines pass through the point and produce “perfect” fit.

- Two points?...

- This is a general phenomenon: the amount of data needed to obtain a meaningful estimate of a model is related to the number of parameters in the model (its *complexity*).
General case (d-dim, matrix form)

\[
X = \begin{bmatrix}
1 & x_1^{(1)} & \cdots & x_d^{(1)} \\
\vdots & \vdots & & \vdots \\
1 & x_1^{(N)} & \cdots & x_d^{(N)}
\end{bmatrix}, \quad y = [y_1, \ldots, y_N]^T, \quad w = [w_0, w_1, \ldots, w_d]^T.
\]

In this notation, predictions are $\hat{y} = Xw$, the errors are $y - Xw$, and

\[
L_N(w) = \frac{1}{N} (y - Xw)^T (y - Xw)
\]
General case \((d\text{-dim, matrix form})\)

\[
\mathbf{X} = \begin{bmatrix}
1 & x_1^{(1)} & \cdots & x_d^{(1)} \\
\vdots & \vdots & & \vdots \\
1 & x_1^{(N)} & \cdots & x_d^{(N)}
\end{bmatrix}, \quad \mathbf{y} = [y_1, \ldots, y_N]^{T}, \quad \mathbf{w} = [w_0, w_1, \ldots, w_d]^{T}.
\]

In this notation, predictions are \(\hat{\mathbf{y}} = \mathbf{X}\mathbf{w}\), the errors are \(\mathbf{y} - \mathbf{X}\mathbf{w}\), and

\[
L_N(\mathbf{w}) = \frac{1}{N} (\mathbf{y} - \mathbf{X}\mathbf{w})^{T} (\mathbf{y} - \mathbf{X}\mathbf{w})
\]

For any matrices \(\mathbf{A}, \mathbf{B}\), \((\mathbf{A}\mathbf{B})^{T} = \mathbf{B}^{T} \mathbf{A}^{T}\), \((\mathbf{A} + \mathbf{B})^{T} = \mathbf{A}^{T} + \mathbf{B}^{T}\), \((\mathbf{A}^{T})^{T} = \mathbf{A}\).
General case (d-dim, matrix form)

$$X = \begin{bmatrix} 1 & x_1^{(1)} & \cdots & x_d^{(1)} \\ \vdots & \vdots & & \vdots \\ 1 & x_1^{(N)} & \cdots & x_d^{(N)} \end{bmatrix} , \quad y = [y_1, \ldots, y_N]^T , \quad w = [w_0, w_1, \ldots, w_d]^T .$$

In this notation, predictions are $\hat{y} = Xw$, the errors are $y - Xw$, and

$$L_N(w) = \frac{1}{N} (y - Xw)^T (y - Xw) = \frac{1}{N} (y^T - w^T X^T) (y - Xw) .$$

General case \((d\text{-dim, matrix form})\)

\[
X = \begin{bmatrix}
1 & x_{1}^{(1)} & \cdots & x_{d}^{(1)} \\
\vdots & \vdots & & \vdots \\
1 & x_{1}^{(N)} & \cdots & x_{d}^{(N)}
\end{bmatrix}, \quad
y = [y_1, \ldots, y_N]^T, \quad w = [w_0, w_1, \ldots, w_d]^T.
\]

In this notation, predictions are \(\hat{y} = Xw\), the errors are \(y - Xw\), and

\[
L_N(w) = \frac{1}{N} (y - Xw)^T (y - Xw) = \frac{1}{N} (y^T - w^T X^T) (y - Xw).
\]

For any matrices \(A, B\), \((AB)^T = B^T A^T\), \((A + B)^T = A^T + B^T\), \((A^T)^T = A\).

\[
\frac{\partial}{\partial w} L_N(w) = \ldots = -\frac{2}{n} (X^T y - X^T Xw)
\]
General case \((d\text{-}dim, \text{matrix form})\)

\[
X = \begin{bmatrix}
1 & x_1^{(1)} & \cdots & x_d^{(1)} \\
\vdots & \vdots & & \vdots \\
1 & x_1^{(N)} & \cdots & x_d^{(N)}
\end{bmatrix}, \quad y = [y_1, \ldots, y_N]^T, \quad w = [w_0, w_1, \ldots, w_d]^T.
\]

In this notation, predictions are \(\hat{y} = Xw\), the errors are \(y - Xw\), and

\[
L_N(w) = \frac{1}{N} (y - Xw)^T (y - Xw) = \frac{1}{N} (y^T - w^T X^T) (y - Xw).
\]

For any matrices \(A, B\), \((AB)^T = B^T A^T\), \((A + B)^T = A^T + B^T\), \((A^T)^T = A\).

\[
\frac{\partial}{\partial w} L_N(w) = \ldots = -\frac{2}{n} (X^T y - X^T Xw) = 0
\]
General case (d-dim, matrix form)

\[
\frac{\partial}{\partial \mathbf{w}} L_N(\mathbf{w}) = -\frac{2}{n} (\mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{X} \mathbf{w})
\]
General case (d-dim, matrix form)

\[\frac{\partial}{\partial \mathbf{w}} L_N(\mathbf{w}) = -\frac{2}{n} (X^T \mathbf{y} - X^T \mathbf{X} \mathbf{w}) = 0 \]

\[\Rightarrow \mathbf{w}^* = (X^T X)^{-1} X^T \mathbf{y} \]

- $\mathbf{X}^\dagger \triangleq (X^T X)^{-1} X^T$ is called the Moore-Penrose pseudoinverse of \mathbf{X}.

- Linear regression in Matlab:

\[
\% X(i,:) is i-th example, y(i) is i-th label \\
wLSQ = \text{pinv}([\text{ones(size}(X,1),1) \ X]) * y;
\]

- The symbol \mathbf{X}^\dagger represents the Moore-Penrose pseudoinverse of matrix \mathbf{X}. This is a generalization of the inverse matrix concept to non-square matrices. It is defined as the matrix \mathbf{X}^\dagger that satisfies certain properties, including $\mathbf{X} \mathbf{X}^\dagger = \mathbf{X}^\dagger \mathbf{X}$ and $(\mathbf{X} \mathbf{X}^\dagger)^T = \mathbf{X}^\dagger \mathbf{X}$. In the context of linear regression, it is used to find the least squares solution when the system of equations is underdetermined (more unknowns than equations).
General case (d-dim, matrix form)

$$
\frac{\partial}{\partial \mathbf{w}} L_N(\mathbf{w}) = -\frac{2}{n} (\mathbf{X}^T \mathbf{y} - \mathbf{X}^T \mathbf{X} \mathbf{w}) = 0
$$

$$
\Rightarrow \mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}
$$

- $\mathbf{X}^\dagger \triangleq (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$ is called the Moore-Penrose pseudoinverse of \mathbf{X}.

- Linear regression in Matlab:

```matlab
% X(i,:) is i-th example, y(i) is i-th label
wLSQ = pinv([ones(size(X,1),1) X])*y;
```

- Prediction:

$$
\hat{\mathbf{y}} = \mathbf{w}^* \mathbf{x}_0 = \mathbf{y}^T \mathbf{X}^\dagger T \mathbf{x}_0
$$
Linear regression - generalization

- Matlab demo: linRegSim1D.m
Linear regression - generalization

- Matlab demo: `linRegSim1D.m`

- A paradox?
 - The more training data we have, the “worse” is the fit;
 - But at the same time our prediction ability seems to improve.
Next time

We will find the statistical interpretation of the LSQ procedure for regression, and discover an explanation to this behavior.