Announcements

• 10/9: no class (Columbus Day)

• 10/13: Guest lecture: Meinolf Sellman
 – Optimization and Lagrange multipliers

• 10/16: no class.

• 10/18: Guest lecture: Chad Jenkins
 – Robot learning, intro to unsupervised and reinforcement learning.
Review

- Regularization for model parametrized by \mathbf{w}, trained on data \mathcal{D}:

$$\hat{\mathbf{w}} = \arg\max_{\mathbf{w}} \text{log-likelihood}(\mathcal{D}; \mathbf{w}) - \lambda \cdot \text{penalty}(\mathbf{w}).$$

- Rationale: reduce variance by constraining the model.

- Some possible forms for the penalty term:
 - L_2 arising from Gaussian $p(\mathbf{w})$: $\sum_j w_j^2$.
 - L_1 arising from Laplacian $p(\mathbf{w})$: $\sum_j |w_j|$.
 - Can define many other types of penalty terms...

- The regularization parameter λ determines the strength of the penalty contribution to the objective.
Plan for today

- Regularization in regression.
- A brief survey of where we are and what we have learned.
- Large margin classifiers.
Shrinkage / Ridge regression

- We can impose penalty on \(\mathbf{w} \) in a way similar to LR.

- First, let’s assume Gaussian noise model, and \(L_2 \) regularization. The penalized log-likelihood is:

\[
- \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 - \lambda \sum_{j=1}^{d} w_j^2
\]

- This is known in statistics as ridge regression, or parameter shrinkage.

- The solution (done in PS3):

\[
\hat{\mathbf{w}}_{ridge} = (\lambda \mathbf{I} + \mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.
\]

- I.e., still a unique maximum obtained in closed-form!
Lasso regression

• The L_1-penalized log-likelihood under Gaussian noise model:

$$-\sum_{i=1}^{N}(y_i - w^T x_i)^2 - \lambda \sum_{j=1}^{d} |w_j|$$

• This is still concave (i.e. unique maximum), but unfortunately neither closed-form solution nor gradient descent will do the trick.

 – the objective is not “smooth”.

• Why is it called “lasso”?
Lasso vs. ridge: geometry of error surfaces

- An equivalent formulation for L_p regularization: constrained maximization

$$\hat{\mathbf{w}} = \arg\max_{\mathbf{w}} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2, \quad \text{subject to } \sum_{j=1}^{d} |w_j|^p \leq \beta.$$
Lasso vs. ridge: geometry of error surfaces

- An equivalent formulation for L_p regularization: constrained maximization

\[
\hat{w} = \arg\max_{w: \sum_{j=1}^{d} |w_j|^p \leq \beta} \ - \sum_{i=1}^{N} (y_i - w^T x_i)^2.
\]
Lasso vs. ridge: geometry of error surfaces

- An equivalent formulation for L_p regularization: constrained maximization

$$
\hat{w} = \arg\max_{w: \sum_{j=1}^{d} |w_j|^p \leq \beta} \left(-\sum_{i=1}^{N} (y_i - w^T x_i)^2 \right).
$$
Lasso vs. ridge: geometry of error surfaces

- An equivalent formulation for L_p regularization: constrained maximization

$$\hat{w} = \arg\max_{w: \sum_{j=1}^{d} |w_j|^p \leq \beta} - \sum_{i=1}^{N} (y_i - w^T x_i)^2.$$
Lasso vs. ridge: geometry of error surfaces

• An equivalent formulation for L_p regularization: constrained maximization

$$\hat{\mathbf{w}} = \arg\max_{\mathbf{w}: \sum_{j=1}^{d} |w_j|^p \leq \beta} - \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2.$$
Lasso vs. ridge: geometry of error surfaces

- An equivalent formulation for L_p regularization: constrained maximization

$$\hat{w} = \arg\max_{\mathbf{w}} \; - \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2$$

$$\text{s.t.} \; \sum_{j=1}^{d} |w_j|^{p} \leq \beta$$

- With sufficiently large λ, lasso leads to \textit{sparsity}.

- Must explicitly solve the above optimization problem – e.g., using Lagrange multipliers.
Example: lasso vs. ridge

From HTF: prostate data
Red lines: choice of λ by 10-fold CV.
What have we seen so far

• Fundamental concepts:
 – Learning via empirical loss minimization
 – Bias-variance tradeoff
 – Overfitting and generalization
 – Model selection: cross-validation.
 – Estimation: “frequentist” (ML) and “Bayesian” (MAP).

• A number of models and learning algorithms
Algorithms for supervised learning

Regression

• Generalized linear regression models.

Classification

• Generative models:
 - Gaussian class-conditionals \Rightarrow linear or quadratic discriminant analysis
 - Naïve Bayes classifiers, with Bernoulli marginal class-conditionals.

• Discriminative models
 - Logistic regression and softmax.
 - Fisher’s LDA
Some rules of thumb

- Smaller data sets ⇒ need to worry more about variance and overfitting.
- Simpler models ⇒ may suffer from bias (but less likely to overfit).
 - Simpler = more restricted: fewer parameters or constraints on parameters (penalty, parameters “tied up” etc.)
- In many cases a model/algorithm which is optimal under some assumptions that are clearly violated in the data may still work very well:
 - Fisher’s LDA, Naïve Bayes, Gaussian class model (LDA/QDA),...
Discriminative versus generative models

Main distinction:

- Generative: model prior $p(y)$ and class-conditional $p(x | y)$.

- Discriminative: model posterior $p(y | x)$ directly.

- The ultimate criterion: choose one that works better on test set / CV.
 - If you have a good reason to believe the generative model, go for it (but beware insufficient data!)
 - Anecdote: if the classes are Gaussian, but you ignore that and use linear logistic regression, you are 30% less efficient.

- Often discriminative models happen to have fewer parameters – an advantage on small data sets.
Discriminative classification

- We are still in the realm of linear classification
 \[\hat{y}(x) = \text{sign} \left(w_0 + w^T x \right) \].

- Our eventual objective is to minimize expected 0/1 risk:
 \[E_{y,x} [L(\hat{y}(x), y)] \].

- No probabilities are associated with the predictions \(\hat{y} \) in this formulation; we need to produce a “hard” class assignment for the test \(x \).
Two-class, linearly separable data

- Which linear decision boundary is better?
Two-class, linearly separable data

- Which linear decision boundary is better?

- A possible criterion: the boundary that maximizes the separation between classes.
The classification margin

- Since the data are separable, we can find \(\mathbf{w} \) such that

\[
\forall i = 1, \ldots, N \quad y_i (w_0 + \mathbf{w}^T \mathbf{x}_i) > 0.
\]
The classification margin

- Since the data are separable, we can find \(\mathbf{w} \) such that
 \[
 \forall i = 1, \ldots, N \quad y_i(w_0 + \mathbf{w}^T \mathbf{x}_i) > 0.
 \]

- We can even guarantee (by increasing \(\|\mathbf{w}\| \) if necessary)
 \[
 \forall i = 1, \ldots, N \quad y_i(w_0 + \mathbf{w}^T \mathbf{x}_i) \geq 1.
 \]
The classification margin

Since the data are separable, we can find \(\mathbf{w} \) such that

\[
\forall i = 1, \ldots, N \quad y_i (w_0 + \mathbf{w}^T \mathbf{x}_i) > 0.
\]

We can even guarantee (by increasing \(\|\mathbf{w}\| \) if necessary)

\[
\forall i = 1, \ldots, N \quad y_i (w_0 + \mathbf{w}^T \mathbf{x}_i) \geq 1.
\]

\[
\min_i y_i (w_0 + \mathbf{w}^T \mathbf{x}_i)
\]

is the smallest distance from \(\mathbf{x}_i \) to the boundary (half the separation between classes).

We will refer to it as the margin.
Max-margin boundary

- Can we just state that we want

\[\hat{\mathbf{w}} = \arg\max_{\mathbf{w}} \min_i y_i(w_0 + \mathbf{w}^T \mathbf{x}_i)? \]
Max-margin boundary

• Can we just state that we want

\[\hat{w} = \arg\max_w \min_i y_i(w_0 + w^T x_i) ? \]

• Same kind of problem we have seen with LR: when data are separable the margin is unbounded as \(\|w\| \to \infty \).

• Suppose \(y = 1 \), and \(\|w\| = 1 \). Let \(w_0 + w^T x = c \). Then,

\[\alpha w_0 + (\alpha \cdot w)^T w = \alpha (w_0 + w^T x) = \alpha c, \]
Max-margin boundary

• Can we just state that we want

\[\hat{w} = \text{argmax}_{w} \min_{i} y_i(w_0 + w^T x_i) ? \]

• Same kind of problem we have seen with LR: when data are separable the margin is unbounded as \(||w|| \to \infty \).

• Suppose \(y = 1 \), and \(||w|| = 1 \). Let \(w_0 + w^T x = c \). Then,

\[\alpha w_0 + (\alpha \cdot w)^T w = \alpha (w_0 + w^T x) = \alpha c, \]

i.e. we can achieve arbitrarily wide margin with the same classification boundary.

• We could require \(||w|| = 1 \).
Fixed margin solution

- A more convenient solution: require *fixed* margin of, say, 1.

- Of all \(w \) that achieve such margin, choose the smallest one.
 - This imposes a unique (equivalent) solution!

- The margin constraints, graphically:

\[
1 \cdot (w_0 + w_1 x_i) - 1 \geq 0, \quad y_i = 1 \\
-1 \cdot (w_0 + w_1 x_i) - 1 \geq 0, \quad y_i = -1.
\]
Fixed margin solution

- A more convenient solution: require fixed margin of, say, 1.
- Of all w that achieve such margin, choose the smallest one.
 - This imposes a unique (equivalent) solution!
- The margin constraints, graphically:

\[1 \cdot (w_0 + w_1 x_i) - 1 \geq 0, \quad y_i = 1 \]
\[-1 \cdot (w_0 + w_1 x_i) - 1 \geq 0, \quad y_i = -1. \]
Margin vs. slope

- Separation is maximal when the line passes through \((x^+ + x^-)/2\).
 - The maximum margin is 1;

- the margin is *inversely proportional* to the slope \(|w_1|\);

- The optimal boundary is achieved with

\[
|w_1| = \frac{2}{|x^+ - x^-|}.
\]
Margin and regularization

• In general d-dimensional case, we solve the regularization problem:

$$\text{minimize} \quad \frac{1}{2} \|w\|^2 = \frac{1}{2} \sum_{j=1}^{d} w_j^2,$$

subject to the margin constraint

$$\forall i, \quad y_i(w_0 + w^T x_i) - 1 \geq 0.$$

• This produces margin of exactly 1 (why?)

• Again, the solution is expressed in terms of only a subset of examples.
 – These are the support vectors.
Next time

Support Vector Machines.