Domain Name System

- The **domain name system** (DNS) is an application-layer protocol for mapping domain names to IP addresses.
Domain Name System

- DNS provides a distributed database over the internet that stores various resource records, including:
 - **Address (A) record**: IP address associated with a host name
 - **Mail exchange (MX) record**: mail server of a domain
 - **Name server (NS) record**: authoritative server for a domain

Example DNS entries from http://www.maradns.org/tutorial/recordtypes.html

```
John.example.com, NS mail.john.example.com.
John.example.com, NS mail.john.example.com.
# It's important to provide "glue" in other words, let the world know
# the IP we claim name correct.
mail.john.example.com, 10.9.8.7.
mail.john.example.com, 10.5.77.65.

John, who is running his own nameservers with the DNS 10.9.8.7 and 10.5.77.65 then has a zone file for john.example.com that looks something like this:

# It is best if the NS records for a subdomain agree with the delegation
# (See below)
john.example.com, NS mail.john.example.com.
john.example.com, NS mail.john.example.com.

mail.john.example.com, 10.9.8.7.
mail.john.example.com, 10.5.77.65.

# Here the that is out of the way, here is the rest of the zone
john.example.com, 10.9.8.7.
www.john.example.com, 10.9.8.66.
john.example.com, MX 10 mail.john.example.com.
mail.john.example.com, 10.9.6.7.
```

Example DNS entries from http://www.maradns.org/tutorial/recordtypes.html

Name Servers

- **Domain names**:
 - Two or more labels, separated by dots (e.g., cs166.net)
 - Rightmost label is the top-level domain (TLD)
- **Hierarchy of authoritative name servers**:
 - Information about root domain
 - Information about its subdomains (A records) or references to other name servers (NS records)
- The authoritative name server hierarchy matches the domain hierarchy: root servers point to DNS servers for TLDs, etc.
- **Root servers**, and servers for TLDs change infrequently
- **DNS servers refer to other DNS servers**, not by IP: sometimes must bootstrap by providing an IP along with a name, called a glue record
Namespace Management

- ICANN: Internet Corporation for Assigned Names and Numbers
- ICANN has the overall responsibility for managing DNS. It controls the root domain, delegating control over each top-level domain to a domain name registry.
- Along with a small set of general TLDs, every country has its own TLD -- (cTLDs) – controlled by the government.
- ICANN is the governing body for all general TLDs.
- Until 1999 all .com, .net and .org registries were handled by Network Solutions Incorporated.
- After November, 1999, ICANN and NSI had to allow for a shared registration system and there are currently over 500 registrars in the market.
- Also since 1999, ICANN has created additional gTLDs including some which are sponsored by consortiums or groups of companies.
Top Level Domains

• Started in 1984
• Originally supposed to be named by function
 – .com for commercial websites, .mil for military
• Eventually agreed upon unrestricted TLDs for .com, .net, .org, .info
• In 1994 started allowing country TLDs such as .it, .us
• Tried to move back to hierarchy of purpose in 2000 with creation of .aero, .museum, etc.

Name Resolution

• **Zone**: collection of connected nodes with the same authoritative DNS server
• Resolution method when answer not in cache:
Recursive Name Resolution

Local Machine
- Application
- Resolver
- cache

Server A
- Resolver
- cache
- query
- answer
- referral
- answer

Server B
- Resolver
- cache

Iterative Name Resolution

Local Name Server
- Application
- Resolver
- cache

google.com
- Resolver
- cache
- query
- answer

.com
- Resolver
- cache
- query
- answer

(root)
- Resolver
- cache
- query
- answer
Authoritative Name Servers

• Control distributed among authoritative name servers (ANSs)
 – Responsible for specific domains
 – Can designate other ANS for subdomains

• ANS can be master or slave
 – Master contains original zone table
 – Slaves are replicas, automatically updating

• Makes DNS fault tolerant, automatically distributes load

• ANS must be installed as a NS in parents' zone

Dynamic Resolution

• Many large providers have more than one authoritative name server for a domain

• Problem: need to locate the instance of domain geographically closest to user

• Proposed solution: include first 3 octets of requester's IP in recursive requests to allow better service

• Content distribution networks already do adaptive DNS routing
DNS Caching

- There would be too much network traffic if a path in the DNS tree would be traversed for each query
 - Root zone would be rapidly overloaded
- DNS servers cache results for a specified amount of time
 - Specified by ANS reply’s time-to-live field
- Operating systems and browsers also maintain resolvers and DNS caches
 - View in Windows with command `ipconfig/displaydns`
 - Associated privacy issues
- DNS queries are typically issued over UDP on port 53
 - 16-bit request identifier in payload

Step 1: query yourdomain.org

Step 2: receive reply and cache at local NS and host
DNS Caching (con'd)

Step 3: use cached results rather than querying the ANS

Step 4: Evict cache entries upon ttl expiration

Pharming: DNS Hijacking

• Changing IP associated with a server maliciously:

Phishing: the different web sites look the same.
DNS Cache Poisoning

• Basic idea: give DNS servers false records and get it cached
• DNS uses a 16-bit request identifier to pair queries with answers
• Cache may be poisoned when a name server:
 – Disregards identifiers
 – Has predictable ids
 – Accepts unsolicited DNS records

DNS Cache Poisoning Prevention

• Use random identifiers for queries
• Always check identifiers
• Port randomization for DNS requests
• Deploy DNSSEC
 – Challenging because it is still being deployed and requires reciprocity
DNSSEC

- Guarantees:
 - Authenticity of DNS answer origin
 - Integrity of reply
 - Authenticity of denial of existence

- Accomplishes this by signing DNS replies at each step of the way
- Uses public-key cryptography to sign responses
- Typically use trust anchors, entries in the OS to bootstrap the process

DNS Signing
DNSSEC Deployment

- As the internet becomes regarded as critical infrastructure there is a push to secure DNS
- NIST is in the process of deploying it on root servers now
- May add considerable load to dns servers with packet sizes considerably larger than 512 byte size of UDP packets
- There are political concerns with the US controlling the root level of DNS