The Vector ADT (§5.1)

- The Vector ADT extends the notion of array by storing a sequence of arbitrary objects.
- An element can be accessed, inserted or removed by specifying its rank (number of elements preceding it).
- An exception is thrown if an incorrect rank is specified (e.g., a negative rank).

Main vector operations:

- `object elemAtRank(integer r)`: returns the element at rank r without removing it.
- `object replaceAtRank(integer r, object o)`: replace the element at rank with o and return the old element.
- `insertAtRank(integer r, object o)`: insert a new element o to have rank r.
- `object removeAtRank(integer r)`: removes and returns the element at rank r.

Additional operations `size()` and `isEmpty()`.

Applications of Vectors

- Direct applications:
 - Sorted collection of objects (elementary database)
- Indirect applications:
 - Auxiliary data structure for algorithms
 - Component of other data structures

Array-based Vector

- Use an array \(V \) of size \(N \).
- A variable \(n \) keeps track of the size of the vector (number of elements stored).
- Operation `elemAtRank(r)` is implemented in \(O(1) \) time by returning \(V[r] \).
Insertion

- In operation \(\text{insertAtRank}(r, o) \), we need to make room for the new element by shifting forward the \(n - r \) elements \(V[r], \ldots, V[n-1] \).
- In the worst case \((r = 0) \), this takes \(O(n) \) time.

Deletion

- In operation \(\text{removeAtRank}(r) \), we need to fill the hole left by the removed element by shifting backward the \(n - r - 1 \) elements \(V[r+1], \ldots, V[n-1] \).
- In the worst case \((r = 0) \), this takes \(O(n) \) time.

Performance

- In the array based implementation of a Vector
 - The space used by the data structure is \(O(n) \).
 - \(\text{size} \), \(\text{isEmpty} \), \(\text{elemAtRank} \) and \(\text{replaceAtRank} \) run in \(O(1) \) time.
 - \(\text{insertAtRank} \) and \(\text{removeAtRank} \) run in \(O(n) \) time.
- If we use the array in a circular fashion, \(\text{insertAtRank}(0) \) and \(\text{removeAtRank}(0) \) run in \(O(1) \) time.
- In an \(\text{insertAtRank} \) operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one.

Growable Array-based Vector

- In a push operation, when the array is full, instead of throwing an exception, we can replace the array with a larger one.
- How large should the new array be?
 - incremental strategy: increase the size by a constant \(c \).
 - doubling strategy: double the size.

Algorithm \(\text{push}(o) \):

\[
\begin{align*}
\text{if } t = S.\text{length} - 1 & \text{ then} \\
A & \leftarrow \text{new array of size} \\
& \text{for } i \leftarrow 0 \text{ to } t \text{ do} \\
A[i] & \leftarrow S[i] \\
S & \leftarrow A \\
t & \leftarrow t + 1 \\
S[t] & \leftarrow o
\end{align*}
\]
Comparison of the Strategies

We compare the incremental strategy and the doubling strategy by analyzing the total time $T(n)$ needed to perform a series of n push operations.

We assume that we start with an empty stack represented by an array of size 1.

We call amortized time of a push operation the average time taken by a push over the series of operations, i.e., $T(n)/n$.

Incremental Strategy Analysis

- We replace the array $k = n/c$ times.
- The total time $T(n)$ of a series of n push operations is proportional to $n + c + 2c + 3c + 4c + \ldots + kc = n + c(1 + 2 + 3 + \ldots + k) = n + ck(k + 1)/2$.
- Since c is a constant, $T(n)$ is $O(n + k^2)$, i.e., $O(n^2)$.
- The amortized time of a push operation is $O(n)$.

Doubling Strategy Analysis

- We replace the array $k = \log_2 n$ times.
- The total time $T(n)$ of a series of n push operations is proportional to $n + 1 + 2 + 4 + 8 + \ldots + 2^k = n + 2^{k+1} - 1 = 2n - 1$.
- $T(n)$ is $O(n)$.
- The amortized time of a push operation is $O(1)$.