Partitions with Union-Find Operations (§ 12.7)

- **makeSet(x)**: Create a singleton set containing the element x and return the position storing x in this set.
- **union(A, B)**: Return the set $A \cup B$, destroying the old A and B.
- **find(p)**: Return the set containing the element in position p.

List-based Implementation

- Each set is stored in a sequence represented with a linked-list.
- Each node should store an object containing the element and a reference to the set name.

Analysis of List-based Representation

- When doing a union, always move elements from the smaller set to the larger set:
 - Each time an element is moved it goes to a set of size at least double its old set.
 - Thus, an element can be moved at most $O(\log n)$ times.
- Total time needed to do n unions and finds is $O(n \log n)$.
Tree-based Implementation

- Each element is stored in a node, which contains a pointer to a set name.
- A node \(v \) whose set pointer points back to \(v \) is also a set name.
- Each set is a tree, rooted at a node with a self-referencing set pointer.
- For example: The sets “1”, “2”, and “5”:

Union-Find Operations

- To do a union, simply make the root of one tree point to the root of the other.
- To do a find, follow set-name pointers from the starting node until reaching a node whose set name pointer refers back to itself.

Union-Find Heuristic 1

- Union by size:
 - When performing a union, make the root of smaller tree point to the root of the larger.
- Implies \(O(n \log n) \) time for performing \(n \) union find operations:
 - Each time we follow a pointer, we are going to a subtree of size at least double the size of the previous subtree.
 - Thus, we will follow at most \(O(\log n) \) pointers for any find.

Union-Find Heuristic 2

- Path compression:
 - After performing a find, compress all the pointers on the path just traversed so that they all point to the root.
- Implies \(O(n \log^* n) \) time for performing \(n \) union find operations:
 - Proof is somewhat involved… (and not in the book)
Proof of log* n Amortized Time

For each node \(v \) that is a root
- define \(n(v) \) to be the size of the subtree rooted at \(v \) (including \(v \))
- identified a set with the root of its associated tree.

We update the size field of \(v \) each time a set is unioned into \(v \). Thus, if \(v \) is not a root, then \(n(v) \) is the largest the subtree rooted at \(v \) can be, which occurs just before we union \(v \) into some other node whose size is at least as large as \(v \)’s.

For any node \(v \), then, define the rank of \(v \), which we denote as \(r(v) \), as \(r(v) = \lceil \log n(v) \rceil \):
- \(n(v) \geq 2^{r(v)} \).
- Also, since there are at most \(n \) nodes in the tree of \(v \), \(r(v) \geq \log \ lfloor n(v) \rfloor \), for each node \(v \).

Proof of log* n Amortized Time (2)

For each node \(v \) with parent \(w \):
- \(r(v) > r(w) \)

Claim: There are at most \(n/2^s \) nodes of rank \(s \).

Proof:
- Since \(r(v) = r(w) \), for any node \(v \) with parent \(w \), ranks are monotonically increasing as we follow parent pointers up any tree.
- Thus, if \(r(v) = r(w) \) for two nodes \(v \) and \(w \), then the nodes counted in \(n(v) \) must be separate and distinct from the nodes counted in \(n(w) \).
- If a node \(v \) is of rank \(s \), then \(n(v) \geq 2^s \).
- Therefore, since there are at most \(n \) nodes total, there can be at most \(n/2^s \) that are of rank \(s \).

Proof of log* n Amortized Time (3)

Definition: Tower of two’s function:
- \(t(i) = 2^{t(i-1)} \)

Nodes \(v \) and \(u \) are in the same rank group \(g \) if
- \(g = \log^*(r(v)) = \log^*(r(u)) \)

Since the largest rank is \(\log n \), the largest rank group is
- \(\log^*(\log n) = (\log^* n) - 1 \)

Proof of log* n Amortized Time (4)

Charge 1 cyber-dollar per pointer hop during a find:
- If \(w \) is the root or if \(w \) is in a different rank group than \(v \), then charge the find operation one cyber-dollar.
- Otherwise (\(w \) is not a root and \(v \) and \(w \) are in the same rank group), charge the node \(v \) one cyber-dollar.

Since there are most \((\log^* n) - 1 \) rank groups, this rule guarantees that any find operation is charged at most \(\log^* n \) cyber-dollars.
Proof of \(\log^* n \) Amortized Time (5)

- After we charge a node \(v \) then \(v \) will get a new parent, which is a node higher up in \(v \)'s tree.
- The rank of \(v \)'s new parent will be greater than the rank of \(v \)'s old parent \(w \).
- Thus, any node \(v \) can be charged at most the number of different ranks that are in \(v \)'s rank group.
- If \(v \) is in rank group \(g > 0 \), then \(v \) can be charged at most \(t(g) - t(g-1) \) times before \(v \) has a parent in a higher rank group (and from that point on, \(v \) will never be charged again). In other words, the total number, \(C \), of cyber-dollars that can ever be charged to nodes can be bound as

\[
C \leq \sum_{g=1}^{\log^* n} n(g) \cdot (t(g) - t(g-1))
\]

Bounding \(n(g) \):

\[
n(g) \leq \sum_{x=0}^{t(g)-1} \frac{n}{2^x} = \frac{n}{2^{t(g)-1}} \sum_{x=0}^{t(g)-1} 2^x = \frac{n}{2^{t(g)-1}} \cdot 2^{t(g)-1} = \frac{n}{t(g)}
\]

Returning to \(C \):

\[
C \leq \sum_{g=1}^{\log^* n} \frac{n}{t(g)} \cdot (t(g) - t(g-1)) \leq \sum_{g=1}^{\log^* n-1} \frac{n}{t(g)} \cdot t(g) = \sum_{g=1}^{\log^* n-1} n \leq n \log^* n
\]