Union-Find Partition Structures
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Partitions with Union-Find
Operations (§ 12.7)

# makeSet(x): Create a singleton set containing
the element x and return the position storing x
in this set.

@ union(A,B): Return the set AU B, destroying
the old Aand 5.

@ find(p): Return the set containing the element
in position p.
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List-based Implementation

# Each set is stored in a sequence represented
with a linked-list

# Each node should store an object containing
the element and a reference to the set name
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Analysis of List-based
Representation

#®When doing a union, always move
elements from the smaller set to the
larger set
= Each time an element is moved it goes to a

set of size at least double its old set
= Thus, an element can be moved at most
O(log n) times

#Total time needed to do n unions and

finds is O(n log n).
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Tree-based Implementation
(§ 10.6.3)

# Each element is stored in a node, which contains a
pointer to a set name

# A node v whose set pointer points back to v is also a
set name

# Each set is a tree, rooted at a node with a self
referencing set pointer

# For example: The sets “1”, “2", and “5":
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Union-Find Operations

# To do a union, simply
make the root of one tree
point to the root of the
other

# To do a find, follow set
name pointers from the
starting node until
reaching a node whose
set rame pointer refers
back to itself
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Union-Find Heuristic 1

# Union by size:
= When performing a union,
make the root of smaller
tree point to the root of the
larger
# Implies O(n log n) time
for performing n union
find operations:
= Each time we follow a
pointer, we are going to a
subtree of size at least
double the size of the
previous subtree
= Thus, we will follow at

most O(log n) pointers for
any find.
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Union-Find Heuristic 2

@ Path compression:

= After performing a find, compress all the pointers on the path
just traversed so that they all point to the root

# Implies O(n log* n) time for performing n union find
operations:
= Proof is somewhat involved... (and not in the book)
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Proof of log* n Amortized Time

# For each node vthat is a root
= define (V) to be the size of the subtree rooted at v
(including v)
= identified a set with the root of its associated tree.

# We update the size field of veach time a set is
unioned into v. Thus, if vis not a root, then (V) is
the largest the subtree rooted at v can be, whic
occurs just before we union vinto some other node
whose size is at least as large as v'’s.

# For any node v, then, define the rank of v, which we
denote as r(v), as r(v) = [log m(V)]:

@ Thus, (v) =2,
# Also, since there are at most 17 nodes in the tree of v,
r (V) = [logn), for each node v.
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Proof of log* n Amortized Time (2)

# For each node v with parent w:
n r(v)>r(w)
# Claim: 7here are at most n/ 25 nodes of rank s.

# Proof:

= Since r(v) < r(w), for any node v with parent w, ranks are
monotonically increasing as we follow parent pointers up
any tree.

» Thus, if r(v) = r(w) for two nodes vand w, then the nodes
counted in 7/ V) must be separate and distinct from the
nodes counted in A w).

= If a node vis of rank s, then (V) 2> 2.

= Therefore, since there are at most 77 nodes total, there can
be at most 77/ 25 that are of rank s.
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PLofof log* n Amortized Time (3)

@ Definition: Tower of two’s function:
w t(i) = 20D

#®Nodes vand v are in the same rank
group g if
= g = log*(Av)) = log*(/(u)).

#Since the largest rank is log n, the
largest rank group is
= log*(log n) = (log* n)-1
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Proof of log* n Amortized Time (4)

@ Charge 1 cyber-dollar per pointer hop during
a find:
» If wis the root or if wis in a different rank group

than v, then charge the find operation one cyber
dollar.

= Otherwise (wis not a root and vand ware in the
same rank group), charge the node v one cyber
dollar.
@ Since there are most (log* n)-1 rank groups,
this rule guarantees that any find operation is
charged at most log* n cyber-dollars.
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Proof of log* n Amortized Time (5)

# After we charge a node vthen v will get a new
parent, which is a node higher up in v’s tree.

# The rank of v’s new parent will be greater than the
rank of v's old parent w.

# Thus, any node v can be charged at most the
number of different ranks that are in v's rank group.

# If visin rank group g > 0, then v can be charged at
most { ¢ {g-1) times before vhas a parent in a
higher rank group (and from that point on, v will
never be charged agaich. In other words, the total
number, G of cyber dllars that can ever be charged
to nodes can be bound as

log*n—1

C< Zn(g)~(t(g)—t(g—1))
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Proof of log* n Amortized Time (end)

# Bounding m1(g):
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# Returning to C:

log*n—1
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