Union-Find Partition Structures

© 2004 Goodrich, Tamassia Union-Find 1

Partitions with Union-Find
Operations (§ 12.7)

makeSet(x): Create a singleton set containing
the element x and return the position storing x
in this set.

@ union(A,B): Return the set AU B, destroying
the old Aand 5.

@ find(p): Return the set containing the element
in position p.

© 2004 Goodrich, Tamassia Union-Find 2

List-based Implementation

Each set is stored in a sequence represented
with a linked-list

Each node should store an object containing
the element and a reference to the set name

e CRO=0=0)
20 N2es
(C\mr\/\/\r\\

&

© 2004 Goodrich, Tamassia Union-Find 3

A

Analysis of List-based
Representation

#®When doing a union, always move
elements from the smaller set to the
larger set
= Each time an element is moved it goes to a

set of size at least double its old set
= Thus, an element can be moved at most
O(log n) times

#Total time needed to do n unions and

finds is O(n log n).

© 2004 Goodrich, Tamassia Union-Find 4

Tree-based Implementation
(§ 10.6.3)

Each element is stored in a node, which contains a
pointer to a set name

A node v whose set pointer points back to v is also a
set name

Each set is a tree, rooted at a node with a self
referencing set pointer

For example: The sets “1”, “2", and “5":

A5E

© 2004 Goodrich, Tamassia Union-Find

Union-Find Operations

To do a union, simply
make the root of one tree
point to the root of the
other

To do a find, follow set
name pointers from the
starting node until
reaching a node whose
set rame pointer refers
back to itself

© 2004 Goodrich, Tamassia Union-Find 6

Union-Find Heuristic 1

Union by size:
= When performing a union,
make the root of smaller
tree point to the root of the
larger
Implies O(n log n) time
for performing n union
find operations:
= Each time we follow a
pointer, we are going to a
subtree of size at least
double the size of the
previous subtree
= Thus, we will follow at

most O(log n) pointers for
any find.

© 2004 Goodrich, Tamassia Union-Find 7

Union-Find Heuristic 2

@ Path compression:

= After performing a find, compress all the pointers on the path
just traversed so that they all point to the root

Implies O(n log* n) time for performing n union find
operations:
= Proof is somewhat involved... (and not in the book)
© 2004 Goodrich, Tamassia Union-Find 8

Proof of log* n Amortized Time

For each node vthat is a root
= define (V) to be the size of the subtree rooted at v
(including v)
= identified a set with the root of its associated tree.

We update the size field of veach time a set is
unioned into v. Thus, if vis not a root, then (V) is
the largest the subtree rooted at v can be, whic
occurs just before we union vinto some other node
whose size is at least as large as v'’s.

For any node v, then, define the rank of v, which we
denote as r(v), as r(v) = [log m(V)]:

@ Thus, (v) =2,
Also, since there are at most 17 nodes in the tree of v,
r (V) = [logn), for each node v.

© 2004 Goodrich, Tamassia Union-Find 9

Proof of log* n Amortized Time (2)

For each node v with parent w:
n r(v)>r(w)
Claim: 7here are at most n/ 25 nodes of rank s.

Proof:

= Since r(v) < r(w), for any node v with parent w, ranks are
monotonically increasing as we follow parent pointers up
any tree.

» Thus, if r(v) = r(w) for two nodes vand w, then the nodes
counted in 7/ V) must be separate and distinct from the
nodes counted in A w).

= If a node vis of rank s, then (V) 2> 2.

= Therefore, since there are at most 77 nodes total, there can
be at most 77/ 25 that are of rank s.

© 2004 Goodrich, Tamassia Union-Find 10

PLofof log* n Amortized Time (3)

@ Definition: Tower of two’s function:
w t(i) = 20D

#®Nodes vand v are in the same rank
group g if
= g = log*(Av)) = log*(/(u)).

#Since the largest rank is log n, the
largest rank group is
= log*(log n) = (log* n)-1

© 2004 Goodrich, Tamassia Union-Find 11

Proof of log* n Amortized Time (4)

@ Charge 1 cyber-dollar per pointer hop during
a find:
» If wis the root or if wis in a different rank group

than v, then charge the find operation one cyber
dollar.

= Otherwise (wis not a root and vand ware in the
same rank group), charge the node v one cyber
dollar.
@ Since there are most (log* n)-1 rank groups,
this rule guarantees that any find operation is
charged at most log* n cyber-dollars.

© 2004 Goodrich, Tamassia Union-Find 12

Proof of log* n Amortized Time (5)

After we charge a node vthen v will get a new
parent, which is a node higher up in v’s tree.

The rank of v’s new parent will be greater than the
rank of v's old parent w.

Thus, any node v can be charged at most the
number of different ranks that are in v's rank group.

If visin rank group g > 0, then v can be charged at
most { ¢ {g-1) times before vhas a parent in a
higher rank group (and from that point on, v will
never be charged agaich. In other words, the total
number, G of cyber dllars that can ever be charged
to nodes can be bound as

log*n—1

C< Zn(g)~(t(g)—t(g—1))

Union-Find 13

© 2004 Goodrich, Tamassia

Proof of log* n Amortized Time (end)

Bounding m1(g):

1(g)

n
n(g) < Z o
s=t(g-1)+1
n 1(g)-1(g-1)-1 1
~ Si(g-D)+ As
2 g-D+ o 2x
n
< 9i(z-D)+1 -2
L n
N Zl(gfl)
_n
1(g)

© 2004 Goodrich, Tamassia

Returning to C:

log*n—1

n
< gZ::, @‘(t(g)—t(g—l))

Union-Find 14

