Recall the Recursion Pattern (§ 2.5)

- **Recursion**: when a method calls itself
- **Classic example**: the factorial function:
 - \(n! = 1 \cdot 2 \cdot 3 \cdots (n-1) \cdot n \)
- **Recursive definition**:
 \[
 f(n) = \begin{cases}
 1 & \text{if } n = 0 \\
 n \cdot f(n-1) & \text{else}
 \end{cases}
 \]

- **As a Java method**:

  ```java
  // recursive factorial function
  public static int recursiveFactorial(int n) {
    if (n == 0) return 1; // basis case
    else return n * recursiveFactorial(n - 1); // recursive case
  }
  ```

Linear Recursion (§ 4.1.1)

- **Test for base cases**.
 - Begin by testing for a set of base cases (there should be at least one).
 - Every possible chain of recursive calls **must** eventually reach a base case, and the handling of each base case should not use recursion.
- **Recur once**.
 - Perform a single recursive call. (This recursive step may involve a test that decides which of several possible recursive calls to make, but it should ultimately choose to make just one of these calls each time we perform this step.)
 - Define each possible recursive call so that it makes progress towards a base case.

A Simple Example of Linear Recursion

Algorithm LinearSum(A, n):

Input: A integer array \(A \) and an integer \(n = 1 \), such that \(A \) has at least \(n \) elements

Output: The sum of the first \(n \) integers in \(A \)

- if \(n = 1 \) then
 - **return** \(A[0] \)
- else
 - **return** LinearSum\(A, n - 1 \) + \(A[n - 1] \)

Example recursion trace:
Reversing an Array

Algorithm ReverseArray(A, i, j):

Input: An array A and nonnegative integer indices i and j

Output: The reversal of the elements in A starting at index i and ending at j

if $i < j$ then
 Swap $A[i]$ and $A[j]$
 ReverseArray($A, i + 1, j - 1$)
return

Defining Arguments for Recursion

In creating recursive methods, it is important to define the methods in ways that facilitate recursion.

This sometimes requires we define additional parameters that are passed to the method.

For example, we defined the array reversal method as ReverseArray(A, i, j), not ReverseArray(A).

Computing Powers

The power function, $p(x,n)=x^n$, can be defined recursively:

\[p(x,n) = \begin{cases}
1 & \text{if } n = 0 \\
 x \cdot p(x,n-1) & \text{else}
\end{cases} \]

This leads to an power function that runs in $O(n)$ time (for we make n recursive calls).

We can do better than this, however.

Recursive Squaring

We can derive a more efficient linearly recursive algorithm by using repeated squaring:

\[p(x,n) = \begin{cases}
1 & \text{if } x = 0 \\
 x \cdot p(x,(n-1)/2)^2 & \text{if } x > 0 \text{ is odd} \\
 p(x/2)^2 & \text{if } x > 0 \text{ is even}
\end{cases} \]

For example,

\[
\begin{align*}
2^4 &= 2^{(4/2)^2} = (2^{(2/2)})^2 = (2^1)^2 = 4^2 = 16 \\
2^5 &= 2^{1+(4/2)^2} = 2(2^{(2/2)})^2 = 2(2^1)^2 = 2(4)^2 = 32 \\
2^6 &= 2^{(6/2)^2} = (2^3)^2 = 8^2 = 64 \\
2^7 &= 2^{1+(4/2)^2} = 2(2^{(2/2)})^2 = 2(2^1)^2 = 2(4)^2 = 2(8)^2 = 128.
\end{align*}
\]
A Recursive Squaring Method

Algorithm Power(x, n):

Input: A number x and integer n = 0

Output: The value x^n

if $n = 0$ then
 return 1
if n is odd then
 y = Power(x, (n - 1)/2)
 return x · y · y
else
 y = Power(x, n/2)
 return y · y

Analyzing the Recursive Squaring Method

Algorithm Power(x, n):

Input: A number x and integer n = 0

Output: The value x^n

if $n = 0$ then
 return 1
if n is odd then
 y = Power(x, (n - 1)/2)
 return x · y · y
else
 y = Power(x, n/2)
 return y · y

It is important that we used a variable twice here rather than calling the method twice.

Tail Recursion

- Tail recursion occurs when a linearly recursive method makes its recursive call as its last step.
- The array reversal method is an example.
- Such methods can be easily converted to non-recursive methods (which saves on some resources).
- Example:

 Algorithm IterativeReverseArray(A, i, j):

 Input: An array A and nonnegative integer indices i and j

 Output: The reversal of the elements in A starting at index i and ending at j

 while i < j do
 Swap A[i] and A[j]
 i = i + 1
 j = j - 1
 return

Binary Recursion (§ 4.1.2)

- Binary recursion occurs whenever there are two recursive calls for each non-base case.
- Example: the DrawTicks method for drawing ticks on an English ruler.
A Binary Recursive Method for Drawing Ticks

```java
public static void drawOneTick(int tickLength) {
    drawOneTick(tickLength, -1);
}

public static void drawOneTick(int tickLength, int tickLabel) {
    for (int i = 0; i < tickLength; i++)
        System.out.print("-");
    if (tickLabel > 0) System.out.print(" "+tickLabel);
    System.out.println();
}
```

```java
public static void drawTicks(int tickLength) {
    if (tickLength > 0) {
        drawTicks(tickLength - 1);
        drawOneTick(tickLength);
        drawTicks(tickLength - 1);
    }
}
```

```java
public static void drawRuler(int nInches, int majorLength) {
    drawOneTick(majorLength, 0);
    for (int i = 1; i < nInches; i++)
        drawTicks(majorLength - 1);
    drawOneTick(majorLength, i);
    System.out.println();
}
```

Another Binary Recursive Method

Problem: add all the numbers in an integer array `A`:

Algorithm `BinarySum(A, i, n)`

`Input:` An array `A` and integers `i` and `n`
`Output:` The sum of the `n` integers in `A` starting at index `i`

```java
if (n = 1) then
    return BinarySum(A, i, n/2) + BinarySum(A, i + n/2, n/2)
```

Example trace:
```
A B C D E F G H I J K L M
0 1 2 3 4 5 6 7 8 9 10 11 12 13
```

Computing Fibonacci Numbers

Fibonacci numbers are defined recursively:

\[
\begin{align*}
F_0 &= 0 \\
F_1 &= 1 \\
F_i &= F_{i-1} + F_{i-2} \quad \text{for } i > 1.
\end{align*}
\]

As a recursive algorithm (first attempt):

Algorithm `BinaryFib(k)`:
`Input:` Nonnegative integer `k`
`Output:` The `k`th Fibonacci number `F_k`

```java
if k = 1 then
    return k
else
    return BinaryFib(k - 1) + BinaryFib(k - 2)
```

Analyzing the Binary Recursion Fibonacci Algorithm

Let n_k **denote number of recursive calls made by** `BinaryFib(k)`. **Then**

- $n_1 = 1$
- $n_2 = 1$
- $n_3 = n_1 + n_2 + 1 = 1 + 1 + 1 = 3$
- $n_4 = n_2 + n_3 + 1 = 3 + 1 + 1 = 5$
- $n_5 = n_3 + n_2 + 1 = 5 + 3 + 1 = 9$
- $n_6 = n_4 + n_3 + 1 = 9 + 5 + 1 = 15$
- $n_7 = n_5 + n_4 + 1 = 15 + 9 + 1 = 25$
- $n_8 = n_6 + n_5 + 1 = 25 + 15 + 1 = 41$
- $n_9 = n_7 + n_6 + 1 = 41 + 25 + 1 = 67$

Note that the value at least doubles for every other value of n_k. **That is,** $n_k > 2^{k/2}$. **It is exponential!**
A Better Fibonacci Algorithm

- Use linear recursion instead:

 Algorithm LinearFibonacci(k):

 Input: A nonnegative integer *k*

 Output: Pair of Fibonacci numbers \((F_k, F_{k-1})\)

 if \(k = 1\) then

 return \((k, 0)\)

 else

 \((i, j) = \text{LinearFibonacci}(k - 1)\)

 return \((i + j, i)\)

 Runs in \(O(k)\) time.

Multiple Recursion (§ 4.1.3)

- Motivating example: summation puzzles

 - \(pot + pan = bib\)

 - \(dog + cat = pig\)

 - \(boy + girl = baby\)

- Multiple recursion: makes potentially many recursive calls (not just one or two).

Algorithm for Multiple Recursion

- **Algorithm** PuzzleSolve(k,S,U):

 Input: An integer *k*, sequence *S*, and set *U* (the universe of elements to test)

 Output: An enumeration of all \(k\)-length extensions to *S* using elements in *U* without repetitions

 for all \(e \in U\) do

 Remove \(e\) from \(U\) {\(e\) is now being used}

 Add \(e\) to the end of \(S\)

 if \(k = 1\) then

 Test whether \(S\) is a configuration that solves the puzzle

 if \(S\) solves the puzzle then

 return "Solution found: " \(S\)

 else

 PuzzleSolve\((k - 1, S, U)\)

 Add \(e\) back to \(U\) {\(e\) is now unused}

 Remove \(e\) from the end of \(S\)

Visualizing PuzzleSolve

- Initial call

 PuzzleSolve(3,(),{a,b,c})

 PuzzleSolve(2,c,{a,b})

 PuzzleSolve(2,b,{a,c})

 PuzzleSolve(2,a,{b,c})

 PuzzleSolve(1,ab,{c})

 PuzzleSolve(1,ac,{b})

 PuzzleSolve(1,bc,{a})

 PuzzleSolve(1,ca,{b})

 PuzzleSolve(1,bc,{a})

 abc

 bac

 cab

 abc

 acb

 bca

 cab