Quick-Sort

Quick-Sort (§ 10.2)

Quick-sort is a randomized sorting algorithm based on the divide- and conquer paradigm:

- **Divide:** pick a random element \(x \) (called pivot) and partition \(S \) into
 - \(L \) elements less than \(x \)
 - \(E \) elements equal \(x \)
 - \(G \) elements greater than \(x \)
- **Recur:** sort \(L \) and \(G \)
- **Conquer:** join \(L \), \(E \) and \(G \)

Partition

We partition an input sequence as follows:

- We remove, in turn, each element \(y \) from \(S \) and
- We insert \(y \) into \(L \), \(E \) or \(G \), depending on the result of the comparison with the pivot \(x \)
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes \(O(1) \) time
- Thus, the partition step of quick-sort takes \(O(n) \) time

Algorithm `partition(S, p)`

Input sequence \(S \), position \(p \) of pivot

Output subsequences \(L \), \(E \), \(G \) of the elements of \(S \) less than, equal to, or greater than the pivot, resp.

1. \(L, E, G \leftarrow \) empty sequences
2. \(x \leftarrow S\.remove(p) \)
3. while \(\neg S\.isEmpty() \)
 1. \(y \leftarrow S\.remove(S\.first()) \)
 2. if \(y < x \)
 1. \(L\.insertLast(y) \)
 3. else if \(y = x \)
 1. \(E\.insertLast(y) \)
 4. else \(y > x \)
 1. \(G\.insertLast(y) \)
4. return \(L, E, G \)

Quick-Sort Tree

An execution of quick-sort is depicted by a binary tree

- Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1
Execution Example

Pivot selection

7 2 9 4 3 7 6 1

Partition, recursive call, pivot selection

2 4 3 1

Recursive call, ..., base case, join

2 4 3 1 → 1 2 3 4

1 → 1

4 3 → 3 4

4 → 4
Execution Example (cont.)

- Recursive call, pivot selection
- Partition, ..., recursive call, base case
- Join, join

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element.
- One of L and G has size $n - 1$ and the other has size 0.
- The running time is proportional to the sum $n + (n - 1) + \ldots + 2 + 1$.
- Thus, the worst-case running time of quick-sort is $O(n^2)$.

Depth time

<table>
<thead>
<tr>
<th>Depth</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>$n-1$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$n-1$</td>
<td></td>
</tr>
</tbody>
</table>
Expected Running Time

Consider a recursive call of quick-sort on a sequence of size \(s \).

- **Good call:** the sizes of \(L \) and \(G \) are each less than \(3s/4 \).
- **Bad call:** one of \(L \) and \(G \) has size greater than \(3s/4 \).

A call is good with probability \(1/2 \).

1/2 of the possible pivots cause good calls.

<table>
<thead>
<tr>
<th>Good call</th>
<th>Bad call</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1 2 3 4 5 6 7 8 9 10 11 12]</td>
<td>[13 14 15 16]</td>
</tr>
</tbody>
</table>

In-Place Quick-Sort

Quick-sort can be implemented to run in-place.

In the partition step, we use replace operations to rearrange the elements of the input sequence such that:

- the elements less than the pivot have rank less than \(h \).
- the elements equal to the pivot have rank between \(h \) and \(k \).
- the elements greater than the pivot have rank greater than \(k \).

The recursive calls consider:

- elements with rank less than \(h \).
- elements with rank greater than \(k \).

Algorithm inPlaceQuickSort(S, I, r)

- **Input** sequence \(S \), ranks \(I \) and \(r \).
- **Output** sequence \(S \) with the elements of rank between \(I \) and \(r \) rearranged in increasing order.
 - if \(I \geq r \)
 - return
 - \(i \leftarrow \text{a random integer between} \; I \) and \(r \)
 - \(x \leftarrow S.\text{elemAtRank}(i) \)
 - \((h, k) \leftarrow \text{inPlacePartition}(x) \)
 - \(\text{inPlaceQuickSort}(S, I, h - 1) \)
 - \(\text{inPlaceQuickSort}(S, k + 1, r) \)

In-Place Partitioning

Perform the partition using two indices to split \(S \) into \(L \) and \(E \cup G \) (a similar method can split \(E \cup G \) into \(E \) and \(G \)).

Repeat until \(j \) and \(k \) cross:

- Scan \(j \) to the right until finding an element \(\geq x \).
- Scan \(k \) to the left until finding an element \(< x \).
- Swap elements at indices \(j \) and \(k \).

\[3 \; 2 \; 5 \; 1 \; 0 \; 7 \; 3 \; 5 \; 9 \; 2 \; 7 \; 9 \; 8 \; 9 \; 7 \; 6 \; 9 \] (pivot = 6)
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>insertion sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>quick sort</td>
<td>$O(n \log n)$ expected</td>
<td>in-place, randomized, fastest (good for large inputs)</td>
</tr>
<tr>
<td>heap sort</td>
<td>$O(n \log n)$</td>
<td>in-place, fast (good for large inputs)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>sequential data access, fast (good for huge inputs)</td>
</tr>
</tbody>
</table>

Java Implementation

```java
public static void quickSort(Object[] S, Comparator c) {
    if (S.length < 2) return; // the array is already sorted in this case
    quickSortStep(S, c, 0, S.length-1); // recursive sort method
}

private static void quickSortStep(Object[] S, Comparator c, int leftBound, int rightBound) {
    if (leftBound >= rightBound) return; // the indices have crossed
    Object temp; // temp object used for swapping
    Object pivot = S[rightBound];
    int leftIndex = leftBound; // will scan rightward
    int rightIndex = rightBound-1; // will scan leftward
    while (leftIndex <= rightIndex) { // scan right until larger than the pivot
        while ( (leftIndex <= rightIndex) && (c.compare(S[leftIndex], pivot)<=0) )
            leftIndex++;
        while ( (rightIndex >= leftIndex) && (c.compare(S[rightIndex], pivot)>=0))
            rightIndex--;
        if (leftIndex < rightIndex) { // both elements were found
            temp = S[rightIndex];
            S[rightIndex] = S[leftIndex]; // swap these elements
            S[leftIndex] = temp;
        }
    }
    temp = S[rightBound]; // swap pivot with the element at leftIndex
    S[rightBound] = S[leftIndex];
    S[leftIndex] = temp; // the pivot is now at leftIndex, so recur
    quickSortStep(S, c, leftBound, leftIndex-1, rightBound);
}
```

Only works for distinct elements.