Graph Assignment

Goals
- Learn and implement the adjacency matrix structure and Kruskal’s minimum spanning tree algorithm
- Understand and use the decorator pattern and various JDSL classes and interfaces

Your task
- Implement the adjacency matrix structure for representing a graph
- Implement Kruskal’s MST algorithm

Frontend
- Computation and visualization of an approximate traveling salesperson tour

Adjacency Matrix Structure
- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for nonadjacent vertices

Kruskal’s Algorithm
- The vertices are partitioned into clouds
 - We start with one cloud per vertex
 - Clouds are merged during the execution of the algorithm
- Partition ADT:
 - \(\text{makeSet}(o) \): create set \{o\} and return a locator for object o
 - \(\text{find}(l) \): return the set of the object with locator \(l \)
 - \(\text{union}(A,B) \): merge sets A and B

Algorithm: \(\text{KruskalMST}(G) \)

- Input: weighted graph \(G \)
- Output: labeling of the edges of a minimum spanning forest of \(G \)

\(Q \leftarrow \text{new heap-based priority queue} \)
for all \(v \in G.\text{vertices()} \) do
 \(l \leftarrow \text{makeSet}(v) \) \{ elementary cloud \}
 \(\text{setLocator}(v,l) \)
for all \(e \in G.\text{edges()} \) do
 \(Q.\text{insert}(\text{weight}(e),e) \)
while \(\neg Q.\text{isEmpty()} \) do
 \(e \leftarrow Q.\text{removeMin()} \)
 \(\{ u,v \} \leftarrow G.\text{endVertices}(e) \)
 \(A \leftarrow \text{find(getLocator}(u)) \)
 \(B \leftarrow \text{find(getLocator}(v)) \)
if \(A \neq B \) then
 \(\text{setMSFedge}(e) \) \{ merge clouds \}
 \(\text{union}(A,B) \)
Partition Implementation

- **Partition implementation**
 - A set is represented by the sequence of its elements
 - A position stores a reference back to the sequence itself (for operation **find**)
 - The position of an element in the sequence serves as locator for the element in the set
 - In operation **union**, we move the elements of the smaller sequence into the larger sequence
- **Worst-case running times**
 - **makeSet, find**: $O(1)$
 - **union**: $O(n_{min} + n_{max})$

Amortized analysis

- Consider a series of k Partition ADT operations that includes n **makeSet** operations
- Each time we move an element into a new sequence, the size of its set at least doubles
- An element is moved at most $\log_2 n$ times
- Moving an element takes $O(1)$ time
- The total time for the series of operations is $O(k + n \log n)$

Analysis of Kruskal’s Algorithm

- **Graph operations**
 - Methods **vertices** and edges are called once
 - Method **endVertices** is called m times
- **Priority queue operations**
 - We perform m **insert** operations and m **removeMin** operations
- **Partition operations**
 - We perform n **makeSet** operations, $2m$ **find** operations and no more than $n - 1$ **union** operations
- **Label operations**
 - We set vertex labels n times and get them $2m$ times
- **Kruskal’s algorithm** runs in time $O((n + m) \log n)$ time provided the graph has no parallel edges and is represented by the adjacency list structure
Decorator Pattern

- Labels are commonly used in graph algorithms
 - Auxiliary data
 - Output
- Examples
 - DFS: unexplored/visited label for vertices and unexplored/forward/back labels for edges
 - Dijkstra and Prim-Jarnik: distance, locator, and parent labels for vertices
 - Kruskal: locator label for vertices and MSF label for edges
- The decorator pattern extends the methods of the Position ADT to support the handling of attributes (labels)
 - has\((a)\): tests whether the position has attribute \(a\)
 - get\((a)\): returns the value of attribute \(a\)
 - set\((a, x)\): sets to \(x\) the value of attribute \(a\)
 - destroy\((a)\): removes attribute \(a\) and its associated value (for cleanup purposes)
- The decorator pattern can be implemented by storing a dictionary of (attribute, value) items at each position

Traveling Salesperson Problem

- A tour of a graph is a spanning cycle (e.g., a cycle that goes through all the vertices)
- A traveling salesperson tour of a weighted graph is a tour that is simple (i.e., no repeated vertices or edges) and has has minimum weight
- No polynomial-time algorithms are known for computing traveling salesperson tours
- The traveling salesperson problem (TSP) is a major open problem in computer science
 - Find a polynomial-time algorithm computing a traveling salesperson tour or prove that none exists

TSP Approximation

- We can approximate a TSP tour with a tour of at most twice the weight for the case of Euclidean graphs
 - Vertices are points in the plane
 - Every pair of vertices is connected by an edge
 - The weight of an edge is the length of the segment joining the points
- Approximation algorithm
 - Compute a minimum spanning tree
 - Form an Eulerian circuit around the MST
 - Transform the circuit into a tour