Recall Priority Queue ADT (§ 7.1.3)

- A priority queue stores a collection of entries.
- Each entry is a pair of key and value.
- Main methods of the Priority Queue ADT:
 - `insert(k, x)` inserts an entry with key `k` and value `x`.
 - `removeMin()` removes and returns the entry with smallest key.
- Additional methods:
 - `min()` returns, but does not remove, an entry with smallest key.
 - `size()`, `isEmpty()`.
- Applications:
 - Standby flyers
 - Auctions
 - Stock market

Recall Priority Queue Sorting (§ 7.1.4)

- We can use a priority queue to sort a set of comparable elements.
- Insert the elements with a series of `insert` operations.
- Remove the elements in sorted order with a series of `removeMin` operations.
- The running time depends on the priority queue implementation:
 - Unsorted sequence gives selection-sort: O(n^2) time.
 - Sorted sequence gives insertion-sort: O(n) time.
- Can we do better?

Algorithm PQ-Sort(S, C)

```
Input sequence S, comparator C for the elements of S
Output sequence S sorted in increasing order according to C

P ← priority queue with comparator C
while ¬S.isEmpty()
  e ← S.remove(S.first())
  P.insertItem(e, e)
while ¬P.isEmpty()
  e ← P.removeMin()
  S.insertLast(e)
```

Heaps (§7.3)

- A heap is a binary tree storing keys at its nodes and satisfying the following properties:
 - Heap-Order: for every internal node `v` other than the root, `key(v) ≥ key(parent(v))`.
 - Complete Binary Tree: let `h` be the height of the heap.
 - For `i = 0, . . . , h − 1`, there are `2^i` nodes of depth `i`.
 - At depth `h − i`, the internal nodes are to the left of the external nodes.
- The last node of a heap is the rightmost node of depth `h`.
- The last node of a heap is the rightmost node of depth `h`.
Height of a Heap (§ 7.3.1)

Theorem: A heap storing n keys has height $O(\log n)$

Proof: (we apply the complete binary tree property)
- Let h be the height of a heap storing n keys
- Since there are 2^i keys at depth $i = 0, \ldots, h-1$ and at least one key at depth h, we have $n \geq 1 + 2 + 4 + \ldots + 2^{h-1} + 1$
- Thus, $n \geq 2^h$, i.e., $h \leq \log n$

Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each internal node
- We keep track of the position of the last node
- For simplicity, we show only the keys in the pictures

Insertion into a Heap (§ 7.3.3)

- Method `insertItem` of the priority queue ADT corresponds to the insertion of a key k to the heap
- The insertion algorithm consists of three steps
 - Find the insertion node z (the new last node)
 - Store k at z
 - Restore the heap-order property (discussed next)

Upheap

- After the insertion of a new key k, the heap-order property may be violated
- Algorithm `upheap` restores the heap-order property by swapping k along an upward path from the insertion node
- Upheap terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k
- Since a heap has height $O(\log n)$, upheap runs in $O(\log n)$ time
Removal from a Heap (§ 7.3.3)

- Method removeMin of the priority queue ADT corresponds to the removal of the root key from the heap.
- The removal algorithm consists of three steps:
 1. Replace the root key with the key of the last node w.
 2. Remove w.
 3. Restore the heap-order property (discussed next).

Downheap

- After replacing the root key with the key k of the last node, the heap-order property may be violated.
- Algorithm downheap restores the heap-order property by swapping key k along a downward path from the root.
- Upheap terminates when key k reaches a leaf or a node whose children have keys greater than or equal to k.
- Since a heap has height $O(\log n)$, downheap runs in $O(\log n)$ time.

Updating the Last Node

- The insertion node can be found by traversing a path of $O(\log n)$ nodes:
 1. Go up until a left child or the root is reached.
 2. If a left child is reached, go to the right child.
 3. Go down left until a leaf is reached.
- Similar algorithm for updating the last node after a removal.

Heap-Sort (§2.4.4)

- Consider a priority queue with n items implemented by means of a heap:
 1. The space used is $O(n)$.
 2. Methods insert and removeMin take $O(\log n)$ time.
 3. Methods size, isEmpty, and min take time $O(1)$ time.
- Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time.
- The resulting algorithm is called heap sort.
- Heap sort is much faster than quadratic sorting algorithms, such as insertion sort and selection sort.
Vector-based Heap Implementation (§2.4.3)

- We can represent a heap with \(n \) keys by means of a vector of length \(n + 1 \).
- For the node at rank \(i \):
 - the left child is at rank \(2i \)
 - the right child is at rank \(2i + 1 \)
- Links between nodes are not explicitly stored.
- The cell of at rank 0 is not used.
- Operation insert corresponds to inserting at rank \(n + 1 \).
- Operation removeMin corresponds to removing at rank \(n \).
- Yields in-place heap-sort.

Merging Two Heaps

- We are given two heaps and a key \(k \).
- We create a new heap with the root node storing \(k \) and with the two heaps as subtrees.
- We perform downheap to restore the heap order property.

Bottom-up Heap Construction (§2.4.3)

- We can construct a heap storing \(n \) given keys in using a bottom-up construction with \(\log n \) phases.
- In phase \(i \), pairs of heaps with \(2^i - 1 \) keys are merged into heaps with \(2^{i+1} - 1 \) keys.

Example
Example (contd.)

Analysis

- We visualize the worst-case time of a downheap with a proxy path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual downheap path).
- Since each node is traversed by at most two proxy paths, the total number of nodes of the proxy paths is $O(n)$.
- Thus, bottom-up heap construction runs in $O(n)$ time.
- Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort.