
Greedy Method and Compression 1© 2004 Goodrich, Tamassia

The Greedy Method and
Text Compression

Greedy Method and Compression 2© 2004 Goodrich, Tamassia

The Greedy Method
Technique (§ 11.4.2)

The greedy method is a general algorithm
design paradigm, built on the following
elements:

configurations: different choices, collections, or
values to find
objective function: a score assigned to
configurations, which we want to either maximize or
minimize

It works best when applied to problems with the
greedy-choice property:

a globally- optimal solution can always be found by a
series of local improvements from a starting
configuration.

Greedy Method and Compression 3© 2004 Goodrich, Tamassia

Text Compression (§ 11.4)

Given a string X, efficiently encode X into a
smaller string Y

Saves memory and/or bandwidth
A good approach: Huffman encoding

Compute frequency f(c) for each character c.
Encode high- frequency characters with short code
words
No code word is a prefix for another code
Use an optimal encoding tree to determine the
code words

Greedy Method and Compression 4© 2004 Goodrich, Tamassia

Encoding Tree Example
A code is a mapping of each character of an alphabet to a binary
code-word
A prefix code is a binary code such that no code-word is the
prefix of another code-word
An encoding tree represents a prefix code

Each external node stores a character
The code word of a character is given by the path from the root to
the external node storing the character (0 for a left child and 1 for a
right child)

a

b c

d e

111001101000

edcba

Greedy Method and Compression 5© 2004 Goodrich, Tamassia

Encoding Tree Optimization
Given a text string X, we want to find a prefix code for the characters
of X that yields a small encoding for X

Frequent characters should have long code-words
Rare characters should have short code-words

Example
X = abracadabra
T1 encodes X into 29 bits
T2 encodes X into 24 bits

c

a r

d b a

c d

b r

T1 T2

Greedy Method and Compression 6© 2004 Goodrich, Tamassia

Huffman’s Algorithm
Given a string X,
Huffman’s algorithm
construct a prefix
code the minimizes
the size of the
encoding of X
It runs in time
O(n + d log d), where
n is the size of X
and d is the number
of distinct characters
of X
A heap-based
priority queue is
used as an auxiliary
structure

Algorithm HuffmanEncoding(X)
Input string X of size n
Output optimal encoding trie for X
C ← distinctCharacters(X)
computeFrequencies(C, X)
Q ← new empty heap
for all c ∈ C

T ← new single-node tree storing c
Q.insert(getFrequency(c), T)

while Q.size() > 1
f1 ← Q.minKey()
T1 ← Q.removeMin()
f2 ← Q.minKey()
T2 ← Q.removeMin()
T ← join(T1, T2)
Q.insert(f1 + f2, T)

return Q.removeMin()

Greedy Method and Compression 7© 2004 Goodrich, Tamassia

Example

rdcba

21125

X = abracadabra
Frequencies

ca rdb
5 2 1 1 2

ca rdb

2

5 2 2
ca bd r

2

5

4

ca bd r

2

5

4

6

c

a

bd r

2 4

6

11

Greedy Method and Compression 8© 2004 Goodrich, Tamassia

Extended Huffman Tree Example

Greedy Method and Compression 9© 2004 Goodrich, Tamassia

The Fractional Knapsack
Problem (not in book)

Given: A set S of n items, with each item i having
bi - a positive benefit
wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.
If we are allowed to take fractional amounts, then this is
the fractional knapsack problem.

In this case, we let xi denote the amount we take of item i

Objective: maximize

Constraint:

∑
∈Si

iii wxb)/(

∑
∈

≤
Si

i Wx
Greedy Method and Compression 10© 2004 Goodrich, Tamassia

Example
Given: A set S of n items, with each item i having

bi - a positive benefit
wi - a positive weight

Goal: Choose items with maximum total benefit but with
weight at most W.

Weight:
Benefit:

1 2 3 4 5

4 ml 8 ml 2 ml 6 ml 1 ml

$12 $32 $40 $30 $50

Items:

Value: 3
($ per ml)

4 20 5 50
10 ml

Solution:
• 1 ml of 5
• 2 ml of 3
• 6 ml of 4
• 1 ml of 2

“knapsack”

Greedy Method and Compression 11© 2004 Goodrich, Tamassia

The Fractional Knapsack
Algorithm

Greedy choice: Keep taking
item with highest value
(benefit to weight ratio)

Since
Run time: O(n log n). Why?

Correctness: Suppose there
is a better solution

there is an item i with higher
value than a chosen item j,
but xi<wi, xj>0 and vi<vj

If we substitute some i with j,
we get a better solution
How much of i: min{wi-xi, xj}
Thus, there is no better
solution than the greedy one

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i

to maximize benefit w/ weight
at most W

for each item i in S
xi ← 0
vi ← bi / wi {value}

w ← 0 {total weight}
while w < W

remove item i w/ highest vi
xi ← min{wi , W - w}
w ← w + min{wi , W - w}

∑∑
∈∈

=
Si

iii
Si

iii xwbwxb)/()/(

Greedy Method and Compression 12© 2004 Goodrich, Tamassia

Task Scheduling
(not in book)

Given: a set T of n tasks, each having:
A start time, si

A finish time, fi (where si < fi)
Goal: Perform all the tasks using a minimum number of
“machines.”

1 98765432

Machine 1

Machine 3

Machine 2

Greedy Method and Compression 13© 2004 Goodrich, Tamassia

Task Scheduling
Algorithm

Greedy choice: consider tasks
by their start time and use as
few machines as possible with
this order.

Run time: O(n log n). Why?
Correctness: Suppose there is a
better schedule.

We can use k-1 machines
The algorithm uses k
Let i be first task scheduled
on machine k
Machine i must conflict with
k-1 other tasks
But that means there is no
non-conflicting schedule
using k-1 machines

Algorithm taskSchedule(T)
Input: set T of tasks w/ start time si
and finish time fi
Output: non-conflicting schedule
with minimum number of machines
m ← 0 {no. of machines}
while T is not empty

remove task i w/ smallest si
if there’s a machine j for i then

schedule i on machine j
else

m ← m + 1
schedule i on machine m

Greedy Method and Compression 14© 2004 Goodrich, Tamassia

Example
Given: a set T of n tasks, each having:

A start time, si

A finish time, fi (where si < fi)
[1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8] (ordered by start)

Goal: Perform all tasks on min. number of machines

1 98765432

Machine 1

Machine 3

Machine 2

