© 2004 Goodrich, Tamassia Dynamic Programming L

Matrix Chain-Products

(not in book) “i’«

Dynamic Programming is a general
algorithm design paradigm.
= Rather than give the general structure, let us

N il f
first give a motivating example: \
= Matrix Chain-Products B
Review: Matrix Multiplication.
s C=A4*B e
n AisdxeandBisex f
e—1
Cli, j1=) ALi,k]* Blk, /] e
— /_/%
k=0
. A C
» O(def) time d Hij d
H_/
© 2004 Goodrich, Tamassia Dynamic Programming f 2

~Matrix Chain-Products ""‘i’“

Matrix Chain-Product:

= Compute A=A *A *.*A,
= Ajisdix diyy
= Problem: How to parenthesize?
Example
= Bis 3 x 100
= Cis 100 x 5
s Dis5b x5
= (B*C)*D takes 1500 + 75 = 1575 ops
= B*(C*D) takes 1500 + 2500 = 4000 ops

© 2004 Goodrich, Tamassia Dynamic Programming 3

An Enumeration Approach

Matrix Chain-Product Alg.:

= Try all possible ways to parenthesize _§,
A=A¥A ¥ *A

= Calculate number of ops for each one
= Pick the one that is best
Running time:
= The number of paranethesizations is equal
to the number of binary trees with n nodes
= This is exponential!

= It is called the Catalan number, and it is
almost 4",

= This is a terrible algorithm!

© 2004 Goodrich, Tamassia Dynamic Programming 4

A Greedy Approach

® Idea #1: repeatedly select the product that
uses (up) the most operations.
@ Counter-example:
s Ais10 x5
=« Bis5x 10
«n Cis1l0 x5
« Dis5 x 10
Greedy idea #1 gives (A*B)*(C*D), which takes
500+1000+500 = 2000 ops
A*((B*C)*D) takes 500+250+250 = 1000 ops

© 2004 Goodrich, Tamassia Dynamic Programming 5

(G
Another Greedy Approach f

@ Idea #2: repeatedly select the product that uses
the fewest operations.
& Counter-example:
= Ais 101 x 11
m Bisll x9
= Cis9 x 100
= Dis 100 x 99
= Greedy idea #2 gives A*((B*C)*D)), which takes
109989+9900+108900=228789 ops
= (A*B)*(C*D) takes 9999+89991+89100=189090 ops
The greedy approach is not giving us the
optimal value.

© 2004 Goodrich, Tamassia Dynamic Programming 6

A “Recursive” Approach

Define subproblems:
= Find the best parenthesization of A*A;,,*...*A,.
= Let N;; denote the number of operations done by this
subproblem.

= The optimal solution for the whole problem is N, ;.

Subproblem optimality: The optimal solution can be
defined in terms of optimal subproblems

= There has to be a final multiplication (root of the expression
tree) for the optimal solution.

= Say, the final multiply is at index iz (Ag*...*A)*(A, *..¥A,.).

= Then the optimal solution N, .., is the sum of two optimal
subproblems, Ng; and N, ., plus the time for the last multiply.

= If the global optimum did not have these optimal
subproblems, we could define an even better “optimal”
solution.

© 2004 Goodrich, Tamassia Dynamic Programming 7

A Characterizin
C

Equation

@ The global optimal has to be defined in terms of
optimal subproblems, depending on where the final
multiply is at.

Let us consider all possible places for that final multiply:

= Recall that A is a d; x d,,; dimensional matrix.
= So, a characterizing equation for N, is the following:

N, = min{Ni,k + Nk+1,j + didk+1dj+1}

Bl i<k<j

Note that subproblems are not independent- the
subproblems overlap.

© 2004 Goodrich, Tamassia Dynamic Programming 8

A Dynamic Programming
Algorithm

#| Since subproblems
overlap, we don't Algorithm matrixChain(S):
use recursion. Input: sequence S of n matrices to be multiplied
#| Instead, we Output: number of operations in an optimal
construct optimal paranethization of §
subproblems for i < 1 to n-1 do
“bottom-up.” Njj<0
@ N, /s are easy, so for b <— 1 to n-1 do
start with them for i < 0 to n-b-1 do
Then do length jith
2,3,... subproblems, N;; < +infinity
and so on. for k < i to j-1 do
Running time: O(n3) N;j < min{N;; , Ny +N, i +d;dyy diy}
© 2004 Goodrich, Tamassia Dynamic Programming 9

A Dynamic Programming
Algorithm Visualization

The bottom-up Ny = N 4 N bl e
. e . n-1
construction fillsinthe NJ|o 1 2 i
N array by diagonals 0 . —
#| N,; gets values from 1
pervious entries in i-th
row and j-th column i ||
@ Filling in each entry in
the N table takes O(n)
time.
Total run time: O(n3)
Getting actual n-1
parenthesization can be
done by remembering
“k” for each N entry

© 2004 Goodrich, Tamassia Dynamic Programming 10

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:
= Simple subproblems: the subproblems can be

defined in terms of a few variables, such as j, k, |,
m, and so on.

= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems
= Subproblem overlap: the subproblems are not

independent, but instead they overlap (hence,
should be constructed bottom up).

© 2004 Goodrich, Tamassia Dynamic Programming 11

Subsequences (§ 11.5.1)

®A subsequence of a character string
XgX1X5... X1 IS @ String of the form
Xi X+ Xjy WHere ij < ij+1.
#Not the same as substring!
@ Example String: ABCDEFGHIJK
» Subsequence: ACEGJIK
= Subsequence: DFGHK
= Not subsequence: DAGH

© 2004 Goodrich, Tamassia Dynamic Programming 12

The Longest Common
Subsequence (LCS) Problem

#Given two strings X and Y, the longest
common subsequence (LCS) problem is
to find a longest subsequence common
to both X and Y

#Has applications to DNA similarity
testing (alphabet is {A,C,G,T})
@®Example: ABCDEFG and XZACKDFWGH

have ACDFG as a longest common
subsequence

© 2004 Goodrich, Tamassia Dynamic Programming 13

A Poor Approach to the
LCS Problem

#A Brute-force solution:
= Enumerate all subsequences of X
= Test which ones are also subsequences of Y
= Pick the longest one.
#®Analysis:
» If X is of length n, then it has 2"
subsequences
= This is an exponential-time algorithm!

© 2004 Goodrich, Tamassia Dynamic Programming 14

A Dynamic-Programming
Approach to the LCS Problem

Define L[i,j] to be the length of the longest common
subsequence of X[0..i] and Y[O..j].

@ Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to
incrl]icate that the null part of X or Y has no match with the
other.

@ Then we can define L[i,j] in the general case as follows:

1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
2. If xi#yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no
match here)

Case 1: Case 2:
0123456?891011 0123456?3910
VAR
X=GTTCCTAATA X=GTTCCTAATA
0123456789 0123456789
© 2004 Goodrich, Tamassia Dynamic Programming 15

An LCS Algorithm

Algorithm LCS(X, Y):
Input: Strings Xand YW|th nand m elements, respectively

Output:For i=0,...,n-1, j=0,...,m-1, the length L[/ j] of a longest string
that is a subsequence of both the strlng XO..1 = xox.X%...x; and the

string Y[0.. /1 = yohis--¥;
for /=1to n-1 do

L[;-1]1=0
for =0 to m-1 do

L[-]-/.]] =
for /=0 to n-1 do

for /=0 to m-1 do

if x,= y; then
Ly =L, 1] +1

else

L[, A = max{L[F1, 71, L[}, J-11}
return array L

© 2004 Goodrich, Tamassia Dynamic Programming 16

=

0
0
0
0
0
1
1
1
1
1
1
1

Clo|w|a|luls|lw| =]~
olo|lo|lo|lole|le|lo|a|lo|e] &
== === =m] = =] === -~

R || === =] =] =]

W W R R R R R R R = D] W

Flwl Wl w R Rl || =] &

ol B R R R R R R = D]

|| Bl w W w| e wle] =] o
U e B | W R = D)
|| B e w|w| W] =] e
S|] B W e R = D] O
=3 I VR IV N VR O S e =
||| | R R R R =

© 2004 Goodrich, Tamassia

Dynamic Programming

Visualizing the LCS Algorithm

01234567891011
Y=CGATAATTGAGA

X=GTTCCTAATA
0123456789

17

Analysis of LCS Algorithm

#®We have two nested loops
= The outer one iterates n times
= The inner one iterates m times

= A constant amount of work is done inside
each iteration of the inner loop

= Thus, the total running time is O(nm)
#® Answer is contained in L[n,m] (and the

subsequence can be recovered from the
L table).

© 2004 Goodrich, Tamassia Dynamic Programming 18

