Dynamic Programming is a general algorithm design paradigm.

Rather than give the general structure, let us first give a motivating example: Matrix Chain-Products

Review: Matrix Multiplication.

\[C = A \times B \]

\(A \) is \(d \times e \) and \(B \) is \(e \times f \)

\[C[i,j] = \sum_{k=0}^{e} A[i,k] \times B[k,j] \]

\(O(\text{def}) \) time

An Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize \(A = A_0 \times A_1 \times \cdots \times A_{n-1} \)
- Calculate number of ops for each one
- Pick the one that is best

Running time:
- The number of paranethesizations is equal to the number of binary trees with \(n \) nodes
- This is exponential!
- It is called the Catalan number, and it is almost \(4^n \).
- This is a terrible algorithm!

Matrix Chain-Products (not in book)

Matrix Chain-Product:

- Compute \(A = A_0 \times A_1 \times \cdots \times A_{n-1} \)
- \(A_i \) is \(d_i \times d_{i+1} \)
- Problem: How to parenthesize?

Example

- \(B \) is \(3 \times 100 \)
- \(C \) is \(100 \times 5 \)
- \(D \) is \(5 \times 5 \)
- \((B \times C) \times D \) takes \(1500 + 75 = 1575 \) ops
- \(B \times (C \times D) \) takes \(1500 + 2500 = 4000 \) ops
A Greedy Approach

- **Idea #1**: repeatedly select the product that uses (up) the most operations.
- **Counter-example**:
 - A is 10×5
 - B is 5×10
 - C is 10×5
 - D is 5×10
 - Greedy idea #1 gives $(A\times B)\times(C\times D)$, which takes $500+1000+500 = 2000$ ops
 - $A\times ((B\times C)\times D)$ takes $500+250+250 = 1000$ ops

Another Greedy Approach

- **Idea #2**: repeatedly select the product that uses the fewest operations.
- **Counter-example**:
 - A is 101×11
 - B is 11×9
 - C is 9×100
 - D is 100×99
 - Greedy idea #2 gives $A\times ((B\times C)\times D)$, which takes $109989+9900+108900=228789$ ops
 - $(A\times B)\times(C\times D)$ takes $9999+89991+89100=189090$ ops

The greedy approach is not giving us the optimal value.

A “Recursive” Approach

- **Define subproblems**:
 - Find the best parenthesization of $A_1\times A_2\times \ldots \times A_n$.
 - Let $N_{i,j}$ denote the number of operations done by this subproblem.
 - The optimal solution for the whole problem is $N_{0,n-1}$.
- **Subproblem optimality**: The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiply is at index i: $(A_1\times \ldots \times A_i)\times(A_{i+1}\times \ldots \times A_n)$.
 - Then the optimal solution $N_{i,n-1}$ is the sum of two optimal subproblems, $N_{i,k}$ and $N_{k+1,n-1}$ plus the time for the last multiply.
 - If the global optimum did not have these optimal subproblems, we could define an even better “optimal” solution.

A Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for $N_{i,j}$ is the following:

$$N_{i,j} = \min_{i \leq k < j} \{ N_{i,k} + N_{k+1,j} + d_id_{k+1}d_{j+1} \}$$

- Note that subproblems are not independent - the subproblems overlap.
A Dynamic Programming Algorithm

Since subproblems overlap, we don't use recursion. Instead, we construct optimal subproblems "bottom-up." N_i's are easy, so start with them. Then do length 2,3,... subproblems, and so on. Running time: O(n^3)

Algorithm $\text{matrixChain}(S)$:
- **Input:** sequence S of n matrices to be multiplied
- **Output:** number of operations in an optimal parenthization of S
- for $i \leftarrow 1$ to $n-1$
 - $N_{i,i} \leftarrow 0$
- for $b \leftarrow 1$ to $n-1$
 - for $i \leftarrow 0$ to $n-b-1$
 - $j \leftarrow i+b$
 - $N_{i,j} \leftarrow \infty$
 - for $k \leftarrow i$ to $j-1$
 - $N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - **Simple subproblems:** the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - **Subproblem optimality:** the global optimum value can be defined in terms of optimal subproblems
 - **Subproblem overlap:** the subproblems are not independent, but instead they overlap (hence, should be constructed bottom up).

Subsequences (§ 11.5.1)

- A **subsequence** of a character string $x_0 x_1 x_2 ... x_{n-1}$ is a string of the form $x_i x_{i+1} ... x_j$ where $i \leq j$. Not the same as substring!
- Example String: ABCDEFGHIJK
 - Subsequence: ACEGJIK
 - Subsequence: DFGHK
 - Not subsequence: DAGH

A Dynamic Programming Algorithm Visualization

- The bottom-up construction fills in the N array by diagonals
- $N_{i,j}$ gets values from previous entries in i-th row and j-th column
- Filling in each entry in the N table takes $O(n)$ time.
- Total run time: $O(n^3)$
- Getting actual parenthesization can be done by remembering "k" for each N entry
The Longest Common Subsequence (LCS) Problem

- Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y.
- Has applications to DNA similarity testing (alphabet is \{A,C,G,T\}).
- Example: ABCDEFG and XZACKDFWGH have ACDFG as a longest common subsequence.

A Poor Approach to the LCS Problem

- A Brute-force solution:
 - Enumerate all subsequences of X.
 - Test which ones are also subsequences of Y.
 - Pick the longest one.

- Analysis:
 - If X is of length n, then it has \(2^n\) subsequences.
 - This is an exponential-time algorithm!

A Dynamic-Programming Approach to the LCS Problem

- Define \(L[i,j]\) to be the length of the longest common subsequence of \(X[0..i]\) and \(Y[0..j]\).
- Allow for -1 as an index, so \(L[-1,k]=0\) and \(L[k,-1]=0\), to indicate that the null part of X or Y has no match with the other.
- Then we can define \(L[i,j]\) in the general case as follows:
 1. If \(x_i=y_j\), then \(L[i,j]=L[i-1,j-1]+1\) (we can add this match).
 2. If \(x_i\neq y_j\), then \(L[i,j]=\max\{L[i-1,j],L[i,j-1]\}\) (we have no match here).

An LCS Algorithm

- Algorithm LCS(X,Y):
 - Input: Strings X and Y with n and m elements, respectively.
 - Output: For \(i=0,...,n-1, j=0,...,m-1\), the length \(L[i,j]\) of a longest string that is a subsequence of both the string \(X[0..i]=x_0x_1x_2...x_i\) and the string \(Y[0..j]=y_0y_1y_2...y_j\).

- \(L[i,-1]=0\) for \(i=1\) to \(n-1\).
- \(L[-1,j]=0\) for \(j=0\) to \(m-1\).
- \(L[i,j]=\max\{L[i-1,j],L[i,j-1]\}\) for \(i=0\) to \(n-1\) and \(j=0\) to \(m-1\).

- return array \(L\).
Visualizing the LCS Algorithm

```
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 1 1 2 2 2 2 2 2 2 2 2 2 2 2
2 0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3
3 0 0 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3
4 0 0 1 1 1 2 2 2 3 3 3 3 3 3 3 3 3
5 0 0 1 1 1 1 2 2 3 3 3 3 3 3 3 3 3
6 0 0 1 1 1 1 1 2 3 3 3 3 3 3 3 3 3
7 0 0 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3
8 0 0 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3
9 0 0 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3
```

Answer is contained in \(L[n,m] \) (and the subsequence can be recovered from the \(L \) table).

Analysis of LCS Algorithm

- We have two nested loops
 - The outer one iterates \(n \) times
 - The inner one iterates \(m \) times
 - A constant amount of work is done inside each iteration of the inner loop
- Thus, the total running time is \(O(nm) \)
- Answer is contained in \(L[n,m] \) (and the subsequence can be recovered from the \(L \) table).