Directed Graphs

A digraph is a graph whose edges are all directed.
- Short for "directed graph"

Applications
- One-way streets
- Flights
- Task scheduling

Digraph Properties

A graph \(G=(V,E) \) such that
- Each edge goes in one direction:
 - Edge \((a,b)\) goes from \(a\) to \(b\), but not \(b\) to \(a\).
- If \(G \) is simple, \(m \leq n^{*}(n-1) \).
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of in-edges and out-edges in time proportional to their size.

Digraph Application

Scheduling: edge \((a,b)\) means task \(a\) must be completed before \(b\) can be started.

The good life
Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction.
- In the directed DFS algorithm, we have four types of edges:
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at vertex \(s \) determines the vertices reachable from \(s \).

Reachability

- DFS tree rooted at \(v \): vertices reachable from \(v \) via directed paths

Strong Connectivity

- Each vertex can reach all other vertices.

Strong Connectivity Algorithm

- Pick a vertex \(v \) in \(G \).
- Perform a DFS from \(v \) in \(G \):
 - If there’s a \(w \) not visited, print “no”.
- Let \(G' \) be \(G \) with edges reversed.
- Perform a DFS from \(v \) in \(G' \):
 - If there’s a \(w \) not visited, print “no”.
 - Else, print “yes”.

Running time: \(O(n+m) \).
Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph.
- Can also be done in $O(n+m)$ time using DFS, but is more complicated (similar to biconnectivity).

\[\{a, c, g\} \]

\[\{f, d, e, b\} \]

Transitive Closure

Given a digraph G, the transitive closure of G is the digraph G^* such that:
- G^* has the same vertices as G.
- if G has a directed path from u to v ($u \neq v$), G^* has a directed edge from u to v.

The transitive closure provides reachability information about a digraph.

Computing the Transitive Closure

- We can perform DFS starting at each vertex:
 - $O(n(n+m))$

Alternatively ...

Use dynamic programming:

The Floyd-Warshall Algorithm

If there's a way to get from A to B and from B to C, then there's a way to get from A to C.

Floyd-Warshall Transitive Closure

- Idea #1: Number the vertices 1, 2, ..., n.
- Idea #2: Consider paths that use only vertices numbered 1, 2, ..., k, as intermediate vertices:

Uses only vertices numbered 1, ..., k

(add this edge if it's not already in)

Uses only vertices numbered 1, ..., k 1

Uses only vertices numbered 1, ..., k 1
Floyd-Warshall’s Algorithm

Floyd-Warshall’s algorithm numbers the vertices of G as v_1, \ldots, v_n and computes a series of digraphs G_0, \ldots, G_n

- $G_0 = G$
- G_k has a directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediate vertices in the set $\{v_1, \ldots, v_k\}$

We have that $G_n = G^*$

In phase k, digraph G_k is computed from G_{k-1}

Running time: $O(n^3)$, assuming areAdjacent is $O(1)$ (e.g., adjacency matrix)

Algorithm FloydWarshall(G)
Input digraph G
Output transitive closure G^* of G

$i \leftarrow 1$
for all $v \in G$.vertices() do
 denote v as v_i
 $i \leftarrow i + 1$
for $k \leftarrow 1$ to n do
 $G_k \leftarrow G$
 for $i \leftarrow 1$ to n (i.e., $i \neq k$) do
 for $j \leftarrow 1$ to n (j.e., $j \neq i, k$) do
 if G_{k-1}.areAdjacent(v_i, v_j) \&\& G_{k-1}.areAdjacent(v_j, v_k)
 if $\neg G_k$.areAdjacent(v_i, v_j)
 G_k.insertDirectedEdge(v_i, v_j, k)
 return G_n
Directed Graphs

Floyd-Warshall, Conclusion

DAGs and Topological Ordering

A directed acyclic graph (DAG) is a digraph that has no directed cycles.

A topological ordering of a digraph is a numbering of the vertices such that for every edge \((v_i, v_j)\), we have \(i < j\).

Example: in a task scheduling digraph, a topological ordering is a task sequence that satisfies the precedence constraints.

Theorem

A digraph admits a topological ordering if and only if it is a DAG.

Topological Sorting

Number vertices, so that \((u,v)\) in \(E\) implies \(u < v\) for a typical student day.

Algorithm for Topological Sorting

Note: This algorithm is different than the one in Goodrich-Tamassia.

Method:

\[
\begin{align*}
H & \leftarrow G \quad // \text{Temporary copy of } G \\
& \text{for } n \leftarrow G.numVertices() \\
\text{while } H \text{ is not empty do} \\
& \text{Let } v \text{ be a vertex with no outgoing edges} \\
& \text{Label } v \leftarrow n \\
& \text{Remove } v \text{ from } H \\
\end{align*}
\]

Running time: \(O(n + m)\). How...?
Topological Sorting
Algorithm using DFS

Simulate the algorithm by using depth-first search.

Algorithm \text{topologicalDFS}(G, v)
\begin{itemize}
 \item Input graph \(G \) and a start vertex \(v \) of \(G \)
 \item Output \(G \) and a start vertex \(v \) of \(G \)
 \item \(n \leftarrow G.numVertices() \)
 \item for all \(u \in G\)\text{.vertices()} \(setLabel(u, \text{UNEXPLORED}) \)
 \item for all \(e \in G\)\text{.incidentEdges}(v) \(setLabel(e, \text{UNEXPLORED}) \)
 \item for all \(v \in G\)\text{.vertices()} \(if getLabel(v) = \text{UNEXPLORED} \)
 \(topologicalDFS(G, v) \)
\end{itemize}

\(O(n+m) \) time.

Topological Sorting Example

Algorithm \text{topologicalDFS}(G, v)
\begin{itemize}
 \item Input graph \(G \) and a start vertex \(v \) of \(G \)
 \item Output \(G \) and a start vertex \(v \) of \(G \)
 \item \(n \leftarrow G.numVertices() \)
 \item for all \(u \in G\)\text{.vertices()} \(setLabel(u, \text{UNEXPLORED}) \)
 \item for all \(e \in G\)\text{.edges()} \(setLabel(e, \text{UNEXPLORED}) \)
 \item for all \(v \in G\)\text{.vertices()} \(if getLabel(v) = \text{UNEXPLORED} \)
 \(topologicalDFS(G, v) \)
\end{itemize}

Label \(v \) with topological number \(n \)
\(n \leftarrow n - 1 \)

Topological Sorting Example

Topological Sorting Example

Topological Sorting Example
Topological Sorting Example