Breadth-First Search

Breadth-First Search (§ 12.3.3)

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- BFS on a graph with \(n \) vertices and \(m \) edges takes \(O(n + m) \) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one

BFS Algorithm

Algorithm BFS\((G, s)\)

- \(L_0 \) ← new empty sequence
- \(L_0.insertLast(s) \)
- \(setLabel(s, VISITED) \)
- \(i \leftarrow 0 \)
- while \(-L_i.isEmpty() \)
- \(L_{i+1} \leftarrow \) new empty sequence
- for all \(v \in L_i.elements() \)
- for all \(e \in G.incidentEdges(v) \)
- if getLabel\((e)\) = UNEXPLORED
- \(w \leftarrow \) opposite\((v,e)\)
- if getLabel\((w)\) = UNEXPLORED
- setLabel\((e, DISCOVERY)\)
- setLabel\((w, VISITED)\)
- \(L_{i+1}.insertLast(w) \)
- else
- setLabel\((e, CROSS)\)
- \(i \leftarrow i + 1 \)

Example

- unexplored vertex
- visited vertex
- discovery edge
- cross edge
Example (cont.)

Properties

Notation
G_s: connected component of s

Property 1
$BFS(G, s)$ visits all the vertices and edges of G_s

Property 2
The discovery edges labeled by $BFS(G, s)$ form a spanning tree T_s of G_s

Property 3
For each vertex v in L_i
- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges

Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_v \deg(v) = 2m$
Applications

Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time:

- Compute the connected components of G.
- Compute a spanning forest of G.
- Find a simple cycle in G, or report that G is a forest.
- Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists.

DFS vs. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>components, paths, cycles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Biconnected components</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

DFS vs. BFS (cont.)

- **Back edge** (v, w):
 - w is an ancestor of v in the tree of discovery edges.
- **Cross edge** (v, w):
 - w is in the same level as v or in the next level in the tree of discovery edges.