Analysis of Algorithms

An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.

Running Time (§3.1)
- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics

Experimental Studies
- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition
- Use a method like System.currentTimeMillis() to get an accurate measure of the actual running time
- Plot the results

Limitations of Experiments
- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode (§3.2)

- High level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Example: find max element of an array

```
Algorithm arrayMax(A, n)
Input array $A$ of $n$ integers
Output maximum element of $A$

currentMax ← $A[0]$
for $i ← 1$ to $n - 1$ do
    if $A[i] > currentMax$ then
        currentMax ← $A[i]$
return currentMax
```

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration
 - Algorithm method (arg [, arg]...)
 - Input ...
 - Output ...
- Method call
 - var.method (arg [, arg]...)
- Return value
 - return expression
- Expressions
 - Assignment (like = in Java)
 - Equality testing (like == in Java)
 - Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

- A CPU
- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory takes unit time.
Seven Important Functions (§3.3)

- Seven functions that often appear in algorithm analysis:
 - Constant \(\approx 1 \)
 - Logarithmic \(\approx \log n \)
 - Linear \(\approx n \)
 - N-Log-N \(\approx n \log n \)
 - Quadratic \(\approx n^2 \)
 - Cubic \(\approx n^3 \)
 - Exponential \(\approx 2^n \)

- In a log log chart, the slope of the line corresponds to the growth rate of the function.

Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations (§3.4)

- By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

Algorithm `arrayMax(A, n)`

```
currentMax ← A[0]
for i ← 1 to n − 1 do
    if A[i] > currentMax then
        currentMax ← A[i]
{ increment counter i }
return currentMax
```

<table>
<thead>
<tr>
<th># operations</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>8n − 2</td>
</tr>
</tbody>
</table>

Estimating Running Time

- Algorithm `arrayMax` executes \(8n - 2 \) primitive operations in the worst case. Define:
 - \(a = \) Time taken by the fastest primitive operation
 - \(b = \) Time taken by the slowest primitive operation

- Let \(T(n) \) be worst-case time of `arrayMax`. Then
 \[
 a(8n - 2) \leq T(n) \leq b(8n - 2)
 \]

- Hence, the running time \(T(n) \) is bounded by two linear functions.
Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects $T(n)$ by a constant factor, but
 - Does not alter the growth rate of $T(n)$
- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm `arrayMax`

Constant Factors

- The growth rate is not affected by
 - constant factors or
 - lower-order terms
- Examples
 - $10^2 n + 10^5$ is a linear function
 - $10^n n^2 + 10^n$ is a quadratic function

Big-Oh Notation (§3.4)

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $O(g(n))$ if there are positive constants c and n_0 such that $f(n) \leq cg(n)$ for $n \geq n_0$
- Example: $2n + 10$ is $O(n)$
 - $2n + 10 \leq cn$
 - $(c - 2) n \geq 10$
 - $n \geq 10/(c - 2)$
 - Pick $c = 3$ and $n_0 = 10$

Big-Oh Example

- Example: the function n^2 is not $O(n)$
 - $n^2 \leq cn$
 - $n \leq c$
 - The above inequality cannot be satisfied since c must be a constant
More Big-Oh Examples

- 7n-2
 7n-2 is O(n)
 need c > 0 and n₀ ≥ 1 such that 7n-2 ≤ c•n for n ≥ n₀
 this is true for c = 7 and n₀ = 1

- 3n³ + 20n² + 5
 3n³ + 20n² + 5 is O(n³)
 need c > 0 and n₀ ≥ 1 such that 3n³ + 20n² + 5 ≤ c•n³ for n ≥ n₀
 this is true for c = 4 and n₀ = 21

- 3 log n + 5
 3 log n + 5 is O(log n)
 need c > 0 and n₀ ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n₀
 this is true for c = 8 and n₀ = 2

Big-Oh and Growth Rate

- The big O notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big O notation to rank functions according to their growth rate

<table>
<thead>
<tr>
<th>g(n) grows more</th>
<th>f(n) is O(g(n))</th>
<th>g(n) is O(f(n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Same growth</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Big-Oh Rules

- If is f(n) a polynomial of degree d, then f(n) is O(nᵈ), i.e.,
 1. Drop lower order terms
 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is O(n²)"
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

- The asymptotic analysis of an algorithm determines the running time in big O notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We determine that algorithm arrayMax executes at most 8n – 2 primitive operations
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower order terms are eventually dropped anyhow, we can disregard them when counting primitive operations
Computing Prefix Averages

- We further illustrate asymptotic analysis with two algorithms for prefix averages.
- The i-th prefix average of an array X is average of the first $(i + 1)$ elements of X:
 \[A[i] = \frac{X[0] + X[1] + \ldots + X[i]}{i+1} \]
- Computing the array A of prefix averages of another array X has applications to financial analysis.

Prefix Averages (Quadratic)

The following algorithm computes prefix averages in quadratic time by applying the definition:

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X

#operations

1. $A \leftarrow$ new array of n integers
2. for $i \leftarrow 0$ to $n - 1$ do
3. $n \leftarrow X[0]$
4. for $j \leftarrow 1$ to i do
5. $s \leftarrow s + X[j]$
6. $A[i] \leftarrow s / (i + 1)$
7. return A

Prefix Averages (Linear)

The following algorithm computes prefix averages in linear time by keeping a running sum:

Algorithm prefixAverages2(X, n)

Input array X of n integers

Output array A of prefix averages of X

#operations

1. $A \leftarrow$ new array of n integers
2. $s \leftarrow 0$
3. for $i \leftarrow 0$ to $n - 1$ do
4. $s \leftarrow s + X[i]$
5. $A[i] \leftarrow s / (i + 1)$
6. return A

Arithmetic Progression

- The running time of prefixAverages1 is $O(1 + 2 + \ldots + n)$.
- The sum of the first n integers is $n(n + 1) / 2$.
 - There is a simple visual proof of this fact.
- Thus, algorithm prefixAverages1 runs in $O(n^2)$ time.
Math you need to Review

- Summations
- Logarithms and Exponents
- Proof techniques
- Basic probability

Properties of logarithms:
- \(\log_b(xy) = \log_b x + \log_b y \)
- \(\log_b \left(\frac{x}{y} \right) = \log_b x - \log_b y \)
- \(\log_b x^a = a \log_b x \)
- \(\log_b a = \frac{\log_x a}{\log_x b} \)

Properties of exponentials:
- \(a^{b+c} = a^b a^c \)
- \(a^{bc} = (a^b)^c \)
- \(a^b / a^c = a^{b-c} \)
- \(b = a^{\log_a b} \)
- \(b^c = a^{c \log_a b} \)

Intuition for Asymptotic Notation

Big-Oh
- \(f(n) \) is \(O(g(n)) \) if \(f(n) \) is asymptotically less than or equal to \(g(n) \)

Big-Omega
- \(f(n) \) is \(\Omega(g(n)) \) if \(f(n) \) is asymptotically greater than or equal to \(g(n) \)

Big-Theta
- \(f(n) \) is \(\Theta(g(n)) \) if \(f(n) \) is asymptotically equal to \(g(n) \)

Example Uses of the Relatives of Big-Oh

- \(5n^2 \) is \(\Omega(n^2) \)
- \(f(n) \) is \(\Omega(g(n)) \) if there is a constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \) such that \(f(n) \geq c \cdot g(n) \) for \(n \geq n_0 \)
 - Let \(c = 5 \) and \(n_0 = 1 \)

- \(5n^2 \) is \(\Omega(n) \)
- \(f(n) \) is \(\Omega(g(n)) \) if there is a constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \) such that \(f(n) \geq c \cdot g(n) \) for \(n \geq n_0 \)
 - Let \(c = 1 \) and \(n_0 = 1 \)

- \(5n^2 \) is \(\Theta(n^2) \)
- \(f(n) \) is \(\Theta(g(n)) \) if it is \(\Omega(n^2) \) and \(O(n^2) \). We have already seen the former, for the latter recall that \(f(n) \) is \(O(g(n)) \) if there is a constant \(c > 0 \) and an integer constant \(n_0 \geq 1 \) such that \(f(n) \leq c \cdot g(n) \) for \(n \geq n_0 \)
 - Let \(c = 5 \) and \(n_0 = 1 \)