Multi-Way Search Tree (§ 9.4.1)

A multi-way search tree is an ordered tree such that
- Each internal node has at least two children and stores \(d - 1\) key-element items \((k_i, o_i)\), where \(d\) is the number of children
- For a node with children \(v_1, v_2, \ldots, v_d\) storing keys \(k_1, k_2, \ldots, k_{d-1}\)
 - keys in the subtree of \(v_1\) are less than \(k_1\)
 - keys in the subtree of \(v_i\) are between \(k_{i-1}\) and \(k_i\) \((i = 2, \ldots, d - 1)\)
 - keys in the subtree of \(v_d\) are greater than \(k_{d-1}\)
- The leaves store no items and serve as placeholders

Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees
- Namely, we visit item \((k_i, o_i)\) of node \(v\) between the recursive traversals of the subtrees of \(v\) rooted at children \(v_1\) and \(v_d\)
- An inorder traversal of a multi-way search tree visits the keys in increasing order

Multi-Way Searching

- Similar to search in a binary search tree
- For each internal node with children \(v_1, v_2, \ldots, v_d\) and keys \(k_1, k_2, \ldots, k_{d-1}\)
 - \(k = k_i\) \((i = 1, \ldots, d - 1)\): the search terminates successfully
 - \(k < k_1\): we continue the search in child \(v_1\)
 - \(k_{i-1} < k < k_i\) \((i = 2, \ldots, d - 1)\): we continue the search in child \(v_i\)
 - \(k > k_{d-1}\): we continue the search in child \(v_d\)
- Reaching an external node terminates the search unsuccessfully
- Example: search for 30
(2,4) Trees (§ 9.4.2)

- A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties:
 - **Node-Size Property**: every internal node has at most four children
 - **Depth Property**: all the external nodes have the same depth
- Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node.

Height of a (2,4) Tree

Theorem: A (2,4) tree storing \(n\) items has height \(O(\log n)\)

Proof:

- Let \(h\) be the height of a (2,4) tree with \(n\) items
- Since there are at least \(2^i\) items at depth \(i\), \(i = 0, \ldots, h - 1\) and no items at depth \(h\), we have:
 \[
 n \geq 1 + 2 + 4 + \ldots + 2^{h-1} = 2^h - 1
 \]
- Thus, \(h \leq \log (n + 1)\)

Search

- Searching in a (2,4) tree with \(n\) items takes \(O(\log n)\) time

Insertion

- We insert a new item \((k, o)\) at the parent \(v\) of the leaf reached by searching for \(k\).
 - We preserve the depth property but may cause an overflow (i.e., node \(v\) may become a 5-node).
- Example: inserting key 30 causes an overflow.

Overflow and Split

- We handle an overflow at a 5-node \(v\) with a split operation:
 - Let \(v_1, \ldots, v_5\) be the children of \(v\) and \(k_1, \ldots, k_5\) be the keys of \(v\).
 - Node \(v\) is replaced nodes \(v'\) and \(v''\):
 - \(v'\) is a 3-node with keys \(k_1, k_2, k_3\) and children \(v_1, v_2, v_3\)
 - \(v''\) is a 2-node with key \(k_4\) and children \(v_4, v_5\).
 - Key \(k_3\) is inserted into the parent \(u\) of \(v\) (a new root may be created).
- The overflow may propagate to the parent node \(u\).
Analysis of Insertion

Algorithm: $\text{insert}(k, o)$

1. We search for key k to locate the insertion node v
2. We add the new entry (k, o) at node v
3. while $\text{overflow}(v)$
 - if $\text{isRoot}(v)$
 - create a new empty root above v
 - $v \leftarrow \text{split}(v)$

Let T be a $(2,4)$ tree with n items
- Tree T has $O(\log n)$ height
- Step 1 takes $O(\log n)$ time because we visit $O(\log n)$ nodes
- Step 2 takes $O(1)$ time
- Step 3 takes $O(\log n)$ time because each split takes $O(1)$ time and we perform $O(\log n)$ splits

Thus, an insertion in a $(2,4)$ tree takes $O(\log n)$ time

Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry

Example: to delete key 24, we replace it with 27 (inorder successor)

Underflow and Fusion

- Deleting an entry from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys
- To handle an underflow at node v with parent u, we consider two cases
 - **Case 1**: the adjacent siblings of v are 2-nodes
 - **Fusion operation**: we merge v with an adjacent sibling w and move an entry from u to the merged node v'
 - After a fusion, the underflow may propagate to the parent u

Underflow and Transfer

- To handle an underflow at node v with parent u, we consider two cases
 - **Case 2**: an adjacent sibling w of v is a 3-node or a 4-node
 - **Transfer operation**:
 1. we move a child of w to v
 2. we move an item from u to v
 3. we move an item from w to u
 - After a transfer, no underflow occurs
Analysis of Deletion

Let T be a $(2,4)$ tree with n items
- Tree T has $O(\log n)$ height

In a deletion operation
- We visit $O(\log n)$ nodes to locate the node from which to delete the entry
- We handle an underflow with a series of $O(\log n)$ fusions, followed by at most one transfer
- Each fusion and transfer takes $O(1)$ time

Thus, deleting an item from a $(2,4)$ tree takes $O(\log n)$ time

Implementing a Dictionary

Comparison of efficient dictionary implementations

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Insert</th>
<th>Delete</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash Table</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>High prob. expected</td>
</tr>
<tr>
<td>Skip List</td>
<td>$\log n$ high prob.</td>
<td>$\log n$ high prob.</td>
<td>$\log n$ high prob.</td>
<td>Simple to implement, randomized insertion</td>
</tr>
<tr>
<td>$(2,4)$ Tree</td>
<td>$\log n$ worst-case</td>
<td>$\log n$ worst-case</td>
<td>$\log n$ worst-case</td>
<td>Complex to implement</td>
</tr>
</tbody>
</table>

Notes:
- Delete, Insert, Search: Worst-case, Expected, High probability
- Hash Table: Simple to implement
- Skip List: Simple to implement, Randomized insertion
- $(2,4)$ Tree: Complex to implement