Graphs

Outline and Reading

- Graphs (§6.1)
 - Definition
 - Applications
 - Terminology
 - Properties
 - ADT

- Data structures for graphs (§6.2)
 - Edge list structure
 - Adjacency list structure
 - Adjacency matrix structure

Graph

A graph is a pair \((V, E)\), where
- \(V\) is a set of nodes, called vertices
- \(E\) is a collection of pairs of vertices, called edges

Vertices and edges are positions and store elements

Example:
- A vertex represents an airport and stores the three-letter airport code
- An edge represents a flight route between two airports and stores the mileage of the route

Edge Types

- Directed edge
 - ordered pair of vertices \((u, v)\)
 - first vertex \(u\) is the origin
 - second vertex \(v\) is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices \((u, v)\)
 - e.g., a flight route

Directed graph
- all the edges are directed
- e.g., route network

Undirected graph
- all the edges are undirected
- e.g., flight network

Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram

Terminology

- End vertices (or endpoints) of an edge
 - \(U\) and \(V\) are the endpoints of \(e\)
- Edges incident on a vertex
 - \(a, d, \) and \(b\) are incident on \(v\)
- Adjacent vertices
 - \(U\) and \(V\) are adjacent
- Degree of a vertex
 - \(X\) has degree 5
- Parallel edges
 - \(h\) and \(i\) are parallel edges
- Self-loop
 - \(j\) is a self-loop
Terminology (cont.)

Path
- sequence of alternating vertices and edges
- begins with a vertex
- each edge is preceded and followed by its endpoints
- Simple path
- path such that all its vertices and edges are distinct
- Examples
 - $P_1 = (V, b, X, h, Z)$ is a simple path
 - $P_2 = (U, c, W, e, X, g, Y, f, W, d, V)$ is a path that is not simple

Cycle
- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints
- Simple cycle
- cycle such that all its vertices and edges are distinct
- Examples
 - $C_1 = (V, b, X, g, Y, f, W, c, U, a, d)$ is a simple cycle
 - $C_2 = (U, c, W, e, X, g, Y, f, W, d, V, a, d)$ is a cycle that is not simple

Properties

Property 1
- $\Sigma \deg(v) = 2m$
- Proof: each endpoint is counted twice

Property 2
- In an undirected graph with no self-loops and no multiple edges
- $m \leq \frac{n(n-1)}{2}$
- Example
 - $n = 4$
 - $m = 6$
 - $\deg(v) = 3$

Main Methods of the Graph ADT

Vertices and edges
- are positions
- store elements
- Accessor methods
 - aVertex()
 - incidentEdges(v)
 - endVertices(e)
 - isDirected(e)
 - origin(e)
 - destination(e)
 - opposite(v, e)
 - areAdjacent(v, w)
- Update methods
 - insertVertex(o)
 - insertEdge(v, w, o)
 - insertDirectedEdge(v, w, o)
 - removeVertex(v)
 - removeEdge(e)
- Generic methods
 - numVertices()
 - numEdges()
 - vertices()
 - edges()

Edge List Structure

- Vertex object
 - element
 - reference to position in vertex sequence
- Edge object
 - element
 - origin vertex object
 - destination vertex object
 - reference to position in edge sequence
- Vertex sequence
 - sequence of vertex objects
- Edge sequence
 - sequence of edge objects

Adjacency List Structure

- Edge list structure
 - Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges
- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices
Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non-adjacent vertices

Performance

<table>
<thead>
<tr>
<th>Operation</th>
<th>Edge List</th>
<th>Adjacency List</th>
<th>Adjacency Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>$n + m$</td>
<td>$n + m$</td>
<td>n^2</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>m</td>
<td>$\deg(v)$</td>
<td>n</td>
</tr>
<tr>
<td>areAdjacent(v, w)</td>
<td>m</td>
<td>$\min(\deg(v), \deg(w))$</td>
<td>1</td>
</tr>
<tr>
<td>insertVertex(o)</td>
<td>1</td>
<td>1</td>
<td>n^2</td>
</tr>
<tr>
<td>insertEdge(v, w, o)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>m</td>
<td>$\deg(v)$</td>
<td>n^2</td>
</tr>
<tr>
<td>removeEdge(e)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>