Breadth-First Search

Outline and Reading

- Breadth-first search (§6.3.3)
 - Algorithm
 - Example
 - Properties
 - Analysis
 - Applications
- DFS vs. BFS (§6.3.3)
 - Comparison of applications
 - Comparison of edge labels

Breadth-first search (BFS) is a general technique for traversing a graph. A BFS traversal of a graph G:
- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G

BFS on a graph with \(n \) vertices and \(m \) edges takes \(O(n + m) \) time.

BFS can be further extended to solve other graph problems:
- Find and report a path with the minimum number of edges between two given vertices
- Find a simple cycle, if there is one

Algorithm BFS(G, \(s \))

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>graph G</td>
<td>labeling of the edges</td>
</tr>
<tr>
<td>partition of G</td>
<td>of the vertices of G</td>
</tr>
</tbody>
</table>

for all \(u \in G.vertices() \)

setLabel(\(u \), UNEXPLORED)

for all \(e \in G.edges() \)

setLabel(\(e \), UNEXPLORED)

for all \(v \in G.vertices() \)

if getLabel(\(v \)) = UNEXPLORED

BFS(G, v)

Example (cont.)
Properties

Notation

- G_s: connected component of s

Property 1

$BFS(G, s)$ visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by $BFS(G, s)$ form a spanning tree T_s of G_s

Property 3

- For each vertex v in L_i
 - The path of T_s from s to v has i edges
 - Every path from s to v in G_s has at least i edges

Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - Once as UNEXPLORED
 - Once as VISITED
- Each edge is labeled twice
 - Once as UNEXPLORED
 - Once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum \deg(v) = 2m$

Applications

- Using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in $O(n + m)$ time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Biconnected components</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

DFS vs. BFS (cont.)

- **Back edge** (v, w)
 - w is an ancestor of v in the tree of discovery edges
- **Cross edge** (v, w)
 - w is in the same level as v or in the next level in the tree of discovery edges