
Request

'/login'

username: *

password: *

Response

sessionId: id
Repeatable

Request

'/list'
Response

posts: *

Request

'/remove'

 sessionId: id

 postId: *

Repeatable

Repeatable

Request

'/save-draft'

sessionId: id

draft: *

Request

'/post'

 sessionId: id

 text: *

Request

'/save-draft'

 sessionId: id

draft: ''

1 2 3

7

8

9

11

13

14

5
4

Or

Or

And

6

10

12

Computer Science
Department Information and
Course Descriptions
2008-2009

Brown University
Department of Computer Science
115 Waterman Street, Box 1910
Providence, RI 02912
www.cs.brown.edu

1

CONTENTS
Faculty... 2

Visiting, Adjunct and Joint Faculty.. 5

Undergraduate Programs .. 6

Graduate Programs ... 12

Courses for Undergraduates ... 14

Courses for Undergraduates and Graduates...................................... 17

Courses for Graduates ... 24

Facilities ... 32

Research Areas... 33

The University.. 45

The Area... 45

Graduate Program Application... 45

Foreign Students .. 46

Further Information .. 46

This document details ALL courses taught by the department, not
just those taught this year. For the latest information on each
semester’s teaching schedule, please check:
www.cs.brown.edu/courses.

COMPUTER SCIENCE
Computer science combines the intellectual challenge of a young dis-
cipline with the excitement of an innovative and rapidly expanding
technology. It has been an active area at Brown for 40 years and has
been a department for nearly 30 years. The department resides in
Brown’s Center for Information Technology, a striking building
housing many of the University’s computing activities. Faculty, staff
and students are provided state-of-the-art computing facilities
managed by the department’s technical staff.
The Department of Computer Science offers standard Sc.B. and A.B.
concentrations, standard concentrations in mathematics and computer
science, applied mathematics and computer science, economics and
computer science, and computational biology, as well as a Master’s
program and a Ph.D. program.

http://www.cs.brown.edu/courses/

2

The undergraduate program is designed to combine educational
breadth in practical and theoretical computer science with deeper
understanding of specialized areas such as analysis of algorithms,
artificial intelligence, computer graphics, computer security,
computer systems and networks, information management,
programming languages and compilers, software engineering, and
theory of computation. Undergraduates often take at least one
semester of faculty-supervised independent study, working either on
a project of their own choice or as members of a team on a faculty-
sponsored research project.
The department also provides a wealth of opportunities for graduate
research in computer science. Graduate students at Brown pursue
research in a number of areas. Short descriptions of current research
areas can be found starting on page 33. Our established coordination
with other departments of the University provides an unusual
opportunity for advanced research both in traditional “core”
computer science and in areas combining computer science and such
fields as applied mathematics, cognitive science, economics,
engineering, and biology and medicine.

FACULTY
Michael J. Black, Professor, Ph.D., Yale University, 1992. Computer
vision, optical flow estimation, human motion analysis, probabilistic
modeling of natural scenes, forensic video analysis, neural
engineering.
Ugur Cetintemel, Associate Professor, Ph.D., University of Mary-
land, College Park, 2002. Advanced data management systems.
Eugene Charniak, University Professor of Computer Science, Ph.D.,
Massachusetts Institute of Technology, 1972. Artificial intelligence,
natural language processing.
Thomas W. Doeppner, Associate Professor (Research) and Vice
Chair, Ph.D., Princeton University, 1977. Operating systems, con-
current and distributed programming, security.
Rodrigo Fonseca, Assistant Professor (starting in 2009-2010), Ph.D.,
University of California, Berkeley, 2008. Operating systems,
distributed systems, and networking, especially large-scale Internet
systems, embedded and mesh wireless networking.
Amy R. Greenwald, Associate Professor, Ph.D., Courant Institute of
Mathematical Sciences, New York University, 1999. Internet agent
economics, multi-agent learning in games, automated game-theoretic
reasoning.

3

Maurice P. Herlihy, Professor, Ph.D., Massachusetts Institute of
Technology, 1984. Concurrent and distributed computing.
John F. Hughes, Professor, Ph.D., University of California, Berkeley,
1982. Computer graphics systems, application of mathematics to
fundamentals of computer graphics, gesture-based interfaces for
modeling, art-based graphics.
Sorin Istrail, Julie Nguyen Brown Professor in Computational and
Mathematical Sciences and Professor of Computer Science, Ph.D.,
University of Bucharest, 1979. Computational Biology: genomics,
gene regulatory networks, genetics basis of complex diseases, protein
folding, medical bioinformatics, programming languages for
genomics; Combinatorial algorithms, graph theory, computational
complexity; Statistical physics and theory of complex systems.
John Jannotti, Assistant Professor, Ph.D., Massachusetts Institute of
Technology, 2002. Computer systems, broadly construed — espe-
cially operating systems, networking and mobile systems. Particu-
larly interested in loosely coupled distributed systems enabling
qualitatively new functionality.
Odest Chadwicke Jenkins, Assistant Professor, Ph.D., University of
Southern California, 2003. Robotics, computer vision, computer an-
imation, machine learning, human motion capture and analysis.
Philip N. Klein, Professor, Ph.D., Massachusetts Institute of Tech-
nology, 1988. Algorithms for combinatorial optimization,
approximation algorithms, graph algorithms.
Shriram Krishnamurthi, Associate Professor, Ph.D., Rice University,
2001. Programming languages and environments, computer-aided
verification, security, software engineering.
David H. Laidlaw, Professor, Ph.D., California Institute of
Technology, 1995. Interdisciplinary research into robust and ef-
fective computational, modeling, and visualization tools to solve
problems in biology, fluid dynamics, archaeology, medical imaging,
and other disciplines.
Anna Lysyanskaya, Associate Professor, Ph.D., Massachusetts Insti-
tute of Technology, 2002. Cryptography, theory of computation,
computer security, secure distributed algorithms.
Claire Mathieu, Professor, Ph.D., University of Paris-Sud (France),
1988. Approximation algorithms for combinatorial optimization,
probabilistic analysis of algorithms.
Franco P. Preparata, An Wang Professor, Dr. Eng., University of
Rome, 1959. Computational biology, computational geometry and
metrology, parallel computation, design and analysis of algorithms,
probabilistic analysis of algorithms.

4

Benjamin Raphael, Assistant Professor, Ph.D., University of
California, San Diego, 2002. Combinatorial optimization,
computational biology, design and analysis of algorithms.
Steven P. Reiss, Professor, Ph.D., Yale University, 1977. Program-
ming environments, software engineering, user interfaces, software
visualization, software understanding.
John E. Savage, Professor, Ph.D., Massachusetts Institute of Tech-
nology, 1965. Applied theory of computation, parallel computation,
design and analysis of algorithms, models of computation,
nanocomputing.
Meinolf Sellmann, Assistant Professor, Dr. rer. nat., University of
Paderborn, 2002. Combinatorial optimization and feasibility:
operations research, algorithms, constraint programming.
Erik B. Sudderth, Assistant Professor (starting in 2009-2010), Ph.D.,
Massachusetts Institute of Technology, 2006. Machine learning,
computer vision, statistical signal and image processing, probabilistic
inference, Bayesian nonparametrics.
Roberto Tamassia, Professor and Chair, Ph.D., University of Illinois,
1988. Analysis, design, and implementation of algorithms,
information security, cryptography, graph drawing and
computational geometry.
Eli Upfal, Professor, Ph.D., Hebrew University, Jerusalem, 1983.
Theory of computing, randomized algorithms, stochastic analysis of
algorithms, Internet and Web modeling and algorithms, parallel and
distributed computing, computational biology.
Andries van Dam, Thomas J. Watson Jr. University Professor of
Technology and Education and Professor of Computer Science,
Ph.D., University of Pennsylvania, 1966. Interactive computer
graphics, particularly immersive virtual reality and pen-centric
computing; hypermedia and electronic books, including interactive
illustrations, and web-based learning.
Pascal Van Hentenryck, Professor, Ph.D., University of Namur
(Belgium), 1987. Combinatorial optimization, programming
languages, artificial intelligence, constraint programming, decision
making under uncertainty, computational biology, software and
hardware verification, numerical analysis.
Peter Wegner, Professor Emeritus, Ph.D., London University, 1968.
Programming languages, software engineering.
Stanley B. Zdonik, Professor, Ph.D., Massachusetts Institute of
Technology, 1983. Database management systems, stream-
processing, automatic database design, scientific databases, querying
uncertain data, databases and cloud computing.

5

VISITING, ADJUNCT AND JOINT
FACULTY
Roger B. Blumberg, Adjunct Lecturer, B.A., Columbia University,
1983. Computer science education, educational software design,
computing & society, and the history & philosophy of technology.
Thomas L. Dean, Adjunct Professor, Ph.D., Yale University, 1986.
Artificial intelligence, probabilistic inference, machine learning,
robot problem solving.
Kathi Fisler, Adjunct Associate Professor, Ph.D., Indiana University,
1996. Computer-aided verification, access-control policy analysis
and authoring, diagram-based specification languages.
Dina Goldin, Visiting Scientist, Ph.D., Brown University, 1997.
Models of interactive computation and constraint database algebras,
computing paradigms, similarity querying, languages for
programming and querying, agent-oriented computing paradigms,
algorithms and computer-aided design.
Mark Johnson, Professor of Cognitive & Linguistic Science and
Computer Science. Ph.D., Stanford University, 1987. Computational
linguistics, natural language processing.
Joseph J. LaViola, Jr., Adjunct Assistant Professor. Ph.D., Brown
University, 2005. Pen-based computing, user interfaces, human
motion estimation, virtual reality, and computer graphics.
Barbara Meier, Visiting Assistant Professor, Sc.M., Brown
University, 1987. Computer animation, visual effects,
nonphotorealistic rendering, designing tools for artists.
Donald Stanford, Adjunct Professor, Sc.M., Brown University, 1977.
Enterprise Java and component engineering, online transaction
processing models, standards-based networking models (IP), wireless
communications systems.
Gabriel Taubin, Associate Professor of Engineering and Computer
Science. Ph.D., Brown University, 1991. Licenciado en Ciencias
Matemáticas, University of Buenos Aires, 1981. Computer vision,
computer graphics, geometry modeling, mesh signal processing, ge-
ometry compression, smart cameras, smart sensor networks, em-
bedded systems.
Alan Usas, Adjunct Associate Professor, Ph.D., Stanford University,
1976. Instructional and research applications of technology, security,
fault-tolerant computing, entrepreneuring.

6

UNDERGRADUATE PROGRAMS
Undergraduate concentrations in computer science encourage stu-
dents to take both theoretical courses that develop logical and math-
ematical reasoning abilities and practical courses that provide
experience in the construction, design, and implementation of real
computing systems.
The primary source for information on majoring in computer science
is the Undergraduate Concentration Information, available at
www.cs.brown.edu/ugrad/concentrations/.
Students can determine their concentration advisor from the list at
www.cs.brown.edu/ugrad/concentrations/advisors.html
Writing Requirement: computer programming is a methodical ex-
pression of complicated ideas. An appropriate writing course serves
both to sharpen this ability and to facilitate the description of pro-
grams to others, an integral part of the programming task. Concen-
trators in all programs except computational biology must take an
approved writing course. To qualify for approval, a course should
require at least two essays and be graded in part on the quality of
these essays. To use a particular course to fulfill the writing require-
ment, students should have the approval form at
www.cs.brown.edu/ugrad/concentrations/writing.html signed by
the course’s instructor.

Computer Science A.B.
The standard A.B. concentration in computer science has two prereq-
uisites: any math course beyond MATH0090 (except for MATH0420
or APMA0330), as well as an approved writing course. It requires six
core CS courses (or, if CSCI0190 is taken, five core courses): either
CSCI0150 and CSCI0160, CSCI0170 and CSCI0180, or CSCI0190;
plus CSCI0220, CSCI0310, CSCI0320, and an approved introductory
CS theory course (currently only CSCI0510); and three advanced
courses in CS or related areas. Two of the courses must include a pair
of courses with a coherent theme. A list of approved course pairs is
available at the approved course pair webpage
www.cs.brown.edu/ugrad/concentrations/approvedpairs.html.

Computer Science Sc.B.
The standard Sc.B. concentration in computer science has two pre-
requisites: any math course beyond MATH0090 (except for
MATH0420 or APMA0330), as well as an approved writing course.
It requires two courses in mathematics or applied mathematics
beyond MATH0100 or MATH0170, one of which must be a linear

http://www.cs.brown.edu/ugrad/concentrations/
http://cs.brown.edu/ugrad/concentrations/advisors.html
http://www.cs.brown.edu/ugrad/concentrations/writing.html
http://cs.brown.edu/ugrad/concentrations/approvedpairs.html

7

algebra course (CSCI053, MATH0520, or MATH0540); an approved
two-course sequence in physics, chemistry, biology, engineering or
geological sciences; six core CS courses (or five core courses if CSCI
0190 is taken): either CSCI0150 and CSCI0160, CSCI0170 and
CSCI0180, or CSCI1090; plus CSCI0220, CSCI0310, CSCI0320,
and an approved CS theory course (currently only CSCI0510); and
seven advanced (1000-level) courses in computer science or related
areas, including one course in each of three subfields (no course may
count for more than one subfield): CS systems (CSCI1230,
CSCI1260, CSCI1270, CSCI1380, CSCI1600, CSCI1610,
CSCI1660, CSCI1670, CSCI1680, CSCI1730, or CSCI1900), CS
theory (CSCI1490, CSCI1510, CSCI1550, CSCI1570, CSCI1590,
CSCI1730, or CSCI1760), artificial intelligence (CSCI1410,
CSCI1430, CSCI1460, CSCI1480, or CSCI1490), and one capstone
course (a one-semester course, normally taken in the student’s last
undergraduate year, in which the student (or group of students) uses a
significant portion of his or her undergraduate education, broadly
interpreted, in studying some current topic in-depth, to produce a
culminating artifact such as a paper or software project). Four of the
advanced courses must be approved pairs (see
www.cs.brown.edu/ugrad/concentrations/approvedpairs.html).
Four of the advanced courses must be CS courses.

Computer Science–Economics
The joint computer science–economics concentration exposes stu-
dents to both theoretical and practical connections between computer
science and economics. The intent of the concentration is to prepare
students for either academic careers conducting research in areas that
emphasize the overlap between the two fields or professional careers
that incorporate aspects of economics and computer technology.
The concentration is offered in two versions, the A.B. and the Sc.B.
While the A.B. degree allows students to explore the two disciplines
by taking advanced courses in both departments, its smaller number
of required courses is compatible with a liberal arts education. The
Sc.B. degree achieves greater depth in both computer science and
economics by requiring more courses, and it offers students the
opportunity to integrate both disciplines creatively through a design
requirement.

Computer Science–Economics A.B.
Interested students may contact concentration advisors in either the
Department of Computer Science or the Department of Economics.
Prerequisites: MATH0090 and MATH0100 or MATH0170.

http://cs.brown.edu/ugrad/concentrations/approvedpairs.html

8

MATH0520 or MATH0540. ECON0110. An approved writing
course.
Required courses: APMA1650. Seven CS courses are required (or six
courses if CSCI0190 is taken): either CSCI0150 and CSCI0160,
CSCI0170 and CSCI0180 or CSCI0190; CSCI0220, CSCI0310, and
CSCI0510; and two courses from either the analytical track
(CSCI1410, CSCI1490, CSCI1550, CSCI1570, CSCI1590,
CSCI1760, and one of APMA1210 and APMA1660) or the
information systems track (CSCI0320, CSCI1230, CSCI1260,
CSCO1270, CSCO1380, CSCI1430, CSCI1480, CSCI1660,
CSCI1670, CSCI1680, CSCI1730, and CSCI1900). Six additional
economics courses are required: ECON1100 or ECON1130 (or
ECON1110 with permission), ECON1210, ECON1630, and three
other 1000-level courses, of which two must be chosen from the
“mathematical economics” group (ECON1170, ECON1470,
ECON1640, ECON1750, ECON1850, ECON1860, and ECON1870).

Computer Science–Economics Sc.B.
Interested students may contact concentration advisors in either the
Department of Computer Science or the Department of Economics.
Prerequisites: MATH0090 and MATH0100 or MATH0170.
MATH0520 or MATH0540. ECON0110. An approved writing
course.
Required courses:
Applied Mathematics: APMA1650.
Computer Science: CSCI0150 and CSCI0160, CSCI0170 and
CSCI0180, or CSCI0190. CSCI0220, CSCI0310, CSCI0320 and
CSCI0510. One of the following tracks: (1) Analytical track. Two
courses from the set CSCI1410, CSCI1490, CSCI1550, CSCI1570,
CSCI1590, CSCI1760, and one of APMA1210 and APMA1660. (2)
Information systems track. Two courses from the set CSCI1230,
CSCI1260, CSCI1270, CSCI1380, CSCI1430, CSCI1480,
CSCI1660, CSCI1670, CSCI1680, CSCI1730, CSCI1900. One
additional 1000-level CS course.
Economics: ECON1110 or ECON1130, ECON1210 and ECON1630,
plus at least five other 1000-level economics courses. Of those five
courses, at least three must be chosen from the “mathematical eco-
nomics” group, comprised of ECON1170, ECON1470, ECON1640,
ECON1750, ECON1850, ECON1860, and ECON1870. Capstone
course: a one-semester course, normally taken in the student’s last
undergraduate year, in which the student (or group of students) uses a
significant portion of his or her undergraduate education, broadly
interpreted, in studying some current topic, preferably at the

9

intersection of computer science and economics, in-depth, to produce
a culminating artifact such as a paper or software project.

Applied Mathematics–Computer Science
Sc.B.

Interested students may contact concentration advisors in the Divi-
sion of Applied Mathematics or the Department of Computer Sci-
ence. Prerequisites: any math course beyond MATH0090 (except for
MATH0420 or APMA0330), as well as an approved writing course.
Required courses: MATH0180 or MATH0350, and MATH0520 or
MATH0540; APMA0350, APMA0360, and either APMA1170 or
APMA1180; CSCI0150 and CSCI0160, or CSCI0170 and
CSCI0180, or CSCI0190, plus CSCI0220, and two of: CSCI0310,
CSCI0320 or CSCI0510. (In some cases, substitutions of equivalent
courses are permitted.) In addition, students must complete three
1000-level courses in applied math and three 1000-level courses in
computer science and a capstone course.
The three computer science courses must include a pair of courses
with a coherent theme. Approved course pairs can be found on the
approved pair webpage
http://cs.brown.edu/ugrad/concentrations/approvedpairs.html
Of the 1000-level applied mathematics courses, at least two should
constitute a standard sequence or address a common theme. For
example, either of the pairs APMA1200–APMA1210 or
APMA1650–APMA1660 is suitable. Capstone course: a one-
semester course, normally taken in the student’s last
undergraduate year, in which the student (or group of students)
use a significant portion of their undergraduate education,
broadly interpreted, in studying some current topic in-depth, to
produce a culminating artifact such as a paper or software
project.

Computational Biology Sc.B.
Interested students may contact concentration advisors in the De-
partment of Computer Science, the Division of Biology and
Medicine, the Division of Applied Mathematics, or the Department
of Chemistry. Prerequisites: MATH0100 or MATH0170, and
BIOL0200, or equivalents.
Sixteen courses are required beyond the prerequisites. General core
course requirements: these include one course in organic chemistry
(CHEM0330); two courses in biology (BIOL0470, and BIOL0280 or
BIOL0500); and two courses in computer science (CSCI0150 and
CSCI0160), or (CSCI0170 and CSCI0180) or (CSCI0190), plus all

http://cs.brown.edu/ugrad/concentrations/approvedpairs.html

10

students are required to take (CSCI0220), one course in probability
and statistics (APMA 1650). Computational biology core course
requirements: (CSCI1810 and APMA1080). A minimum of one
semester of independent study is required (such as BIOL1950 or
CSCI1970). In addition, students must complete a research project in
their senior year under faculty supervision.
Students must take six courses within one of the following four
tracks. Computational Genomics track (for those interested in the
development of algorithms and high-quality software [tools and
systems] for biological applications); Molecular Modeling track (for
those interested in molecular modeling and drug design); Biological
Sciences track (for those interested in biological questions); Applied
Mathematics and Statistical Genomics track (for those students
whose interest focuses on extracting information from genomic and
molecular biology data, and modeling the dynamics of these
systems). Interested students should consult advisors in the computer
science, chemistry, biology and applied mathematics departments
respectively.

Mathematics–Computer Science Sc.B.
The standard Sc.B. program in mathematics–computer science has as
prerequisites three semesters of calculus, through MATH0180 or
equivalent; one semester of linear algebra, i.e. CSCI0530,
MATH0520, or MATH0540; either passing or placement out of one
of three language courses: FREN0200, GRMN0120, or RUSS0200,
or passing an approved writing course.
Required courses: MATH1530; three additional 1000-level math-
ematics courses; either CSCI0150 and CSCI0160, CSCI0170 and
CSCI0180 or CSCI0190; two of CSCI0310, CSCI0320 or CSCI0510;
three 1000-level CS courses, of which two form an approved pair (as
above under the CS A.B. program); three additional 1000-level
courses chosen from mathematics, computer science, applied
mathematics, or related areas, and approved by the concentration
advisor; a capstone course, as is described previously under the CS
Sc.B. program, and should involve an area in which mathematics and
computer science are clearly related, e.g. computer graphics analysis
of mathematical phenomena, mathematical models used in artificial
intelligence, mathematical analysis of algorithms, or theoretical
models of computation. The student is expected to produce a final
project relating mathematics and computer science.

Independent Study
An undergraduate may undertake a thesis or project, typically in the
senior year, under the supervision of a faculty member. It is up to the

11

interested student to get in touch with a faculty member and convince
her or him to supervise the work. Such an effort is more likely to be
successful if the student’s project relates to the research interests of
the faculty member.
A student engaged in a thesis or project under faculty supervision
may get academic credit by registering for CSCI1970 (“independent
study”). Under ordinary circumstances, a student can receive at most
two semesters of credit for independent study. Note that students
being paid to do research cannot also receive academic credit for it.
Independent study counts toward the advanced computer science
courses required for the A.B. and Sc.B. degrees.

Earning Honors
To be considered a candidate for honors in computer science, a stu-
dent must achieve an outstanding record in the computer science
concentration: grades in CS classes should be mostly As or the
equivalent. Furthermore, the student must complete a thesis under the
supervision of a committee of two faculty members, one of whom
must be in the Department of Computer Science, and the committee
must deem the thesis worthy of honors.
A student should choose a thesis advisor (who will be the chair of the
student’s committee) and begin work on the project leading to the
thesis no later than the end of the first month of her or his penul-
timate semester. By the end of the third week of the student’s final
semester, he or she must have chosen a second committee member,
have prepared a one-page proposal for the thesis work, and have pre-
sented this proposal to the committee. If the committee approves the
proposal and if the student continues to have an appropriately out-
standing record in computer science courses, then the student is
considered an honors candidate. The committee should notify the
Director of Undergraduate Studies of the student’s status.
By the day before the Registrar’s deadline for honors theses
(normally the first Friday of May for students graduating in the
spring), the student must submit the completed thesis to the com-
mittee and defend it at a public presentation arranged by the Director
of Undergraduate Studies. No specific format is required for thesis
write-ups. Students doing theses or projects may enroll in CSCI1970
to get academic credit for the research. It is also permissible for a
student to do a thesis by expanding a project done in a class.
However, the thesis must significantly exceed the requirements of the
class (as judged by the professor for that class, who in this case
should typically serve as the head of the committee). Honors theses
are normally the result of two semesters of work.

12

GRADUATE PROGRAMS
Brown University offers two graduate degrees in computer science:
an Sc.M. for those who wish to improve their professional compe-
tence in computer science or to prepare for further graduate study,
and a Ph.D. Requirements are outlined below.

Master of Science
The course requirements for the Sc.M. degree consist of a basic and
an advanced component. All courses must be at the 1000-level or
higher and must be completed with a grade of B or better.
The basic component consists of six courses. At least two courses
must be at the 2000-level. Two courses must be computer science
courses that form a coherent major; one course must be a computer
science course that complements the major; three additional courses
must be in computer science or related areas. Examples of majors
and complementary courses are available on the course pairs and
complements webpage:
www.cs.brown.edu/grad/masters/reqs/ScM_Courses.pdf. The
advanced component requires the student to complete two additional
2000-level courses as part of completing one of the four following
options:

A thesis (typically taken as two reading and research courses).
A project (typically taken as two reading and research courses).
A project (typically taken as two reading and research courses) and

an internship that complements the project
Two additional 2000-level courses that demonstrate depth in some

area of computer science or a closely related discipline. This
pair of courses must be approved by the Director of Master’s
Studies.

This will result in a total of eight courses (two of which may be
reading and research).

Concurrent ScB and ScM in
 Computational Biology

The School of Computing at National University of Singapore and
The Department of Computer Science at Brown have established a
concurrent Bachelor’s and Master’s degree program in Compu-
tational Biology. After having first completed four years of under-
graduate study at National University of Singapore, qualified
students will attend Brown University to complete their fifth and

http://cs.brown.edu/grad/masters/reqs/ScM_Courses.pdf

13

final year of study in computational biology. After the successful
completion of requirements set forth by both universities, the
students will simultaneously earn both their Sc.B. and Sc.M. degrees.

Doctor of Philosophy
Ph.D. students must satisfy the requirements for admission to candi-
dacy, fulfill major and minor course requirements, do a thesis pro-
posal, complete a thesis that embodies the results of original research
and gives evidence of high scholarship, and obtain 24 tuition credits.
This is a formal requirement of the graduate school and does not
necessarily imply that 24 courses must be taken.
The requirements for admission to candidacy include a course
requirement that encourages breadth of study in diverse areas of
Computer Science, a programming assignment that tests program-
ming ability, and a research project that tests ability to do research.
These requirements should normally be completed by the end of the
student’s second year. Upon satisfying these requirements, the stu-
dent will be formally admitted to candidacy for the Ph.D. degree in
Computer Science.
The student must complete one major and two minor course re-
quirements. Each requirement is normally met by the satisfactory
completion of two approved one-semester courses. The minor re-
quirements are normally one inside and one outside the field of
Computer Science. The major and minor course requirements are
normally completed by the end of the student’s third year in resi-
dence.
The student’s thesis research is normally done under the supervision
of a member of the Computer Science faculty. The thesis is read by
the thesis supervisor and two readers appointed by the graduate
committee upon the recommendation of the thesis supervisor. It is
presented at a meeting open to students, faculty, and the public. Its
adequacy is judged by the thesis supervisor, the readers, and the fac-
ulty from the Department of Computer Science attending the oral
presentation.
Additionally, a new PhD program in Computational Biology and
Computer Science, sponsored by the Center for Computational
Molecular Biology and the Department of Computer Science, is
being planned and is expected to start in the 2009-2010 academic
year.

14

COURSES OFFERED
Primarily for Undergraduates

CSCI0020. Concepts and Challenges of Computer Science

Removes the mystery surrounding computers and the ever-growing
digital world. Introduces a range of topics including the Internet and
multimedia, along with the underlying digital technology and its
relevance to our society. Other topics include artificial intelligence,
IT security, ethics and economics of computing, and its
pervasiveness in today’s world. Analytic skills are developed through
HTML and Python assignments. CSCI0020 is a good introduction to
a wide range of CS topics that have broad relevance in our society.
No prerequisites.

CSCI0040. Introduction to Scientific Computing and Problem
Solving

An introduction to computer programming and software design in a
high-level language. Emphasizes fundamental techniques and strat-
egies for solving scientific problems with computers. Abstract con-
cepts are illustrated by a wide range of applications from
engineering, the sciences and the humanities. Intended primarily for
students not concentrating in computer science who want a single ap-
plication-oriented programming course. No prerequisites.

CSCI0090-A. Building a Web Application (First-year
seminar) (Not offered 08/09)

Computer applications involving web-based interfaces interacting
with back-end databases are becoming common. These range from e-
commerce sites (such as amazon.com) to Banner, the system through
which students view course information online at Brown. In this
course, we develop a web-based solution for a specific application. In
doing so, we study issues related to software engineering, software
development and the design, structure and implementation of web-
based applications. While the course does not involve substantial
programming, students’ backgrounds should include some
programming and web-page development. Limited enrollment;
permission of instructor required.

CSCI0150. Introduction to Object-Oriented Programming and
Computer Science

Emphasizes object-oriented design and programming in Java, an ef-
fective modern technique for producing modular, reusable, internet-
aware programs. Also introduces interactive computer graphics, user

15

interface design, and some fundamental data structures and
algorithms. A sequence of successively more complex graphics
programs, including Tetris, helps provide a serious introduction to
the field intended for both potential concentrators and those who may
take only a single course. No prerequisites.

CSCI0160. Introduction to Algorithms and Data Structures

This course introduces fundamental techniques for problem solving
by computer that are relevant to most areas of computer science, both
theoretical and applied. Algorithms and data structures for sorting,
searching, graph problems and geometric problems are covered.
Programming assignments conform to the object-oriented meth-
odology introduced in CSCI0150. Prerequisite: CSCI0150 or written
permission.

CSCI0170. Computer Science: An Integrated Introduction

Although students are taught to use programming languages such as
Scheme and ML as tools, the goal of CSCI0170 is not merely to
teach programming. On the contrary, the goal is to convey to
students that computer science is much more than programming! All
of the following fundamental computer science techniques are
integrated into the course material: algorithms, data structures,
analysis, problem solving, abstract reasoning, and collaboration.
Concrete examples are drawn from different subareas of computer
science: from arbitrary-precision arithmetic, natural language
processing, databases and strategic games. Requires no previous
programming experience. Indeed, few high school students are
exposed to functional programming; even students with previous
programming experience often find this course to be an invaluable
part of their education.

CSCI0180. Computer Science: An Integrated Introduction

A continuation of CSCI0170. Students learn to program in Java while
continuing to develop their algorithmic and analytic skills. Object-
oriented design of programs is a principal focus. Examples are
drawn from such areas as strategy games, databases, discrete-event
simulation, window managers, web client/server programming,
route-finding, and data compression. Lab work done with the
assistance of TAs. Prerequisite: CSCI0170.

CSCI0190. Programming with Data Structures and
Algorithms

This course is a one-semester version of CSCI0150 and CSCI0160
for students with prior programming background. It covers data
structures including stacks, lists, queues, trees, heaps, and graphs;

16

algorithmic methods such as divide and conquer and dynamic
programming; and basic analysis techniques. Prerequisite:
CSCI0040, score of 4 or 5 on the CS AP exam, or permission of the
instructor.

CSCI0220. Introduction to Discrete Structures and Probability

The objective of the course is to place on solid foundations the most
common structures of computer science, to illustrate proof tech-
niques, to provide the background for an introductory course in
computational theory and to introduce basic concepts of probability
theory. It introduces Boolean algebras, logic, set theory, elements of
algebraic structures, graph theory, combinatorics and probability. No
prerequisites.

CSCI0240. Visual Thinking/Visual Computing (Not offered
08/09)

This interdisciplinary course provides a systematic grounding in both
technical and theoretical areas of visual research and communication,
with a focus on the key role of computer graphics. In addition to
reading and writing, assignments include visual projects to be
completed with custom-made and commercial software packages.

CSCI0310. Introduction to Computer Systems

This course covers the basic principles behind the organization of
modern computers. It starts with machine representation of data types
and logic design, then explores the architecture and operations of
computer systems, including I/O, pipelining, and memory hierar-
chies. Uses assembly language as an intermediate abstraction to
study introductory operating system and compiler concepts.
Prerequisite: CSCI0150, CSCI0180 or CSCI0190.

CSCI0320. Introduction to Software Engineering

Advanced programming techniques including Java, threads, web
applications, user interfaces and XML. Covers software design
including object-oriented design, systems design, web application
design and user interface design. Software engineering including
modeling, analysis, testing, debugger reuse, the software life cycle,
tools, and project management. Prerequisite: CSCI0160, CSCI0180
or CSCI0190; CSCI0220 is recommended.

CSCI0510. Models of Computation

This course introduces basic models of computation including
languages, finite-state automata and Turing machines. Proves
fundamental limits on computation (incomputability, the halting
problem). Provides the tools to compare the hardness of

17

computational problems (reductions). Introduces computational
complexity classes (P, NP, PSPACE and others). Prerequisite:
CSCI0220.

CSCI0530. Directions: The Matrix in Computer Science

The aim of this course is to provide students interested in computer
science an introduction to vectors and matrices and their use in
modeling and data analysis. The course will be driven by
applications from areas chosen from among: combinatorial
optimization, computer vision, cryptography, game theory, graphics,
information retrieval and web search, machine learning and scientific
visualization. For example, students will learn Google’s PageRank
method for ranking web pages. This course satisfies the linear
algebra requirement for the Computer Science Sc.B. Prerequisite: no
formal prerequisites but students are expected to be comfortable with
mathematics and computing.

For Undergraduates and Graduates
CSCI1230. Introduction to Computer Graphics

This course offers an in-depth exploration of fundamental concepts in
2D and 3D computer graphics. It introduces 2D raster graphics
techniques, including scan conversion, simple image processing,
interaction techniques and user interface design. The bulk of the
course is devoted to 3D modeling, geometric transformations, and 3D
viewing and rendering. A sequence of assignments in C++
culminates in a simple geometric modeler and ray tracer.
Prerequisite: CSCI0160 or CSCI0180; CSCI0320 is strongly
recommended. Students who do not know C++ should take a mini-
course on it offered during the first week of the semester. One of
CSCI0530 or MATH0520 is strongly recommended.

CSCI1250. Introduction to Computer Animation

Introduction to 3D computer animation production including story
writing, production planning, modeling, shading, animation, lighting
and compositing. The first part of the course leads students through a
series of exercises that build on each other to teach basic skills in 2D
and 3D animation. At each step, student work is evaluated for
expressiveness, technical correctness and aesthetic qualities. Students
then work in groups of two to four to create a polished short
animation. The class format includes lecture, demonstration, and
viewing animations. The emphasis is on in-class critique of ongoing
work, which is essential to the cycle of visually evaluating work in
progress, determining improvements, and implementing them for
further evaluation. Prerequisite: consent of instructor.

18

CSCI1260. Introductory Compiler Construction (Not offered
08/09)

Lexical analysis, syntactic analysis, semantic analysis, code genera-
tion, code optimization, translator writing systems. Prerequisites:
CSCI0220 and CSCI0320; CSCI0510 is recommended.

CSCI1270. Database Management Systems

Introduction to database structure, organization, languages and im-
plementation. Relational and object-relational models. Query lan-
guages, query processing, query optimization, normalization, file
structures, concurrency control and recovery algorithms, and
distributed databases. Studies of actual systems. While database
management system usage is covered, emphasis is on the systems-
building aspects of these large, complex systems. We also relate the
material to modern applications such as the web. Prerequisites:
CSCI0220 and CSCI0310.

CSCI1280. Intermediate 3D Computer Animation

This course continues work begun in CCSCI1250 with deeper
exploration of the core technical and artistic aspects of 3D computer
animation. In the first portion of the course, students complete a
series of tutorials and animation assignments in which they learn
more complex modeling, character rigging, animation, shading, and
lighting techniques. In the second portion of the course, students
independently explore one area in more depth and then finally create
portfolio-quality demonstrations alone or in pairs. We read and
discuss technical texts as well as works on artistic motivation and
view related animated films. The emphasis of class time will be on
critiquing ongoing student work. Prerequisite: CSCI1250. Enrollment
limited to 20. Written permission required.

CSCI1340. Innovating Game Development (Not Offered
08/09)

What technologies will shape the next generation of video games?
This project-centered course focuses on computational innovations
for game development. Students examine innovative game
technology through case studies of existing games and talks by
industrial and academic game professionals. In teams, students
propose and implement a project demonstrating a novel technology
for gaming. Recommended: strong computational or engineering
background.

CSCI1370. Virtual Reality Design for Science

Explores the visual and human-computer interaction design process
for scientific applications in Brown’s immersive virtual reality Cave.

19

Joint with RISD. Computer science and design students learn how to
work effectively together; study the process of design, learn about
scientific problems, create designs for scientific applications;
critique, evaluate, realize and iterate designs, and demonstrate final
projects. Prerequisite: permission of the instructor.

CSCI1380. Distributed Computer Systems

Explores the fundamental principles and practice underlying net-
worked information systems. We first cover basic distributed com-
puting mechanisms (e.g., naming, replication, fault tolerance,
security) and enabling middleware technologies. We then discuss
how these mechanisms and technologies fit together to realize
distributed databases and file systems, web-based and mobile
information systems. Prerequisite: CSCI0320.

CSCI1410. Introduction to Artificial Intelligence

Theoretical and practical approaches to designing intelligent systems.
Example tasks range from game playing to hardware verification.
Core topics include knowledge representation, search and
optimization and automated reasoning. Application areas include
natural language processing, machine vision, machine learning, and
robotics. Prerequisites: CSCI0160, CSCI0180 or CSCI0190. Strongly
recommended: CSCI0220.

CSCI1430. Introduction to Computer Vision

How can computers understand the visual world of humans? This
course treats vision as a process of inference from noisy and uncer-
tain data and emphasizes probabilistic and statistical approaches.
Topics may include perception of 3D scene structure from stereo,
motion, and shading; image filtering, smoothing, edge detection; seg-
mentation and grouping; texture analysis; learning, recognition and
search; tracking and motion estimation. Prerequisites: basic linear
algebra, basic calculus and exposure to probability.

CSCI1480. Building Intelligent Robots

How do robots function autonomously in dynamic, unpredictable
environments? This course focuses on programming mobile robots,
such as the iRobot Roomba, to perceive and act autonomously in
real-world environments. The major paradigms for autonomous
control and robot perception are examined and compared with
robotic notions in science fiction. Prerequisite: CSCI0150, CSCI0170
or CSCI0190. Recommended: CSCI1410 or CSCI1230.

20

CSCI1490. Introduction to Combinatorial Optimization

This course covers the algorithmic aspects of optimizing decisions in
fully observable, non-changing environments. Students are
introduced to state-of-the-art optimization methods such as linear
programming, integer programming, local search, and constraint
programming. Prerequisite: CSCI0160, CSCI0180, or CSCI0190.
Strongly recommended: CSCI0310 and CSCI0510; APMA0340,
MATH0520 or MATH0540.

CSCI1510. Introduction to Cryptography and Computer
Security

This course studies the tools for guaranteeing safe communication
and computation in an adversarial setting. We develop notions of se-
curity and give provably secure constructions for such cryptographic
objects as cryptosystems, signature schemes and pseudorandom
generators. We also review the principles of secure system design.
Prerequisites: CSCI0220 and CSCI0510.

CSCI1550. Probabilistic Methods in Computer Science

Introduction to the applications of probability theory in computer
science, in particular to randomized algorithms and probabilistic
analysis of algorithms. The course introduces basic probability
theory and presents applications of randomized and probabilistic
analysis techniques in areas such as combinatorial optimization, data
structures, communication and parallel computation. No prior
knowledge of probability theory is assumed. Prerequisite: CSCI0220
or equivalent; CSCI1570 is recommended but not required.

CSCI1570. Design and Analysis of Algorithms

A single algorithmic improvement can have a greater impact on our
ability to solve a problem than ten years of incremental improve-
ments in CPU speed. We study techniques for designing and
analyzing algorithms. Typical problem areas addressed include
numerical computing, hashing, searching, dynamic programming,
graph algorithms, network flow, and string parsing and matching.
Prerequisites: CSCI0160, CSCI0180, or CSCI0190, and CCI0220.

CSCI1590. Introduction to Computational Complexity (Not
Offered 08/09)

Introduction to the following topics: serial and parallel models of
computation, serial and parallel space and time complexity classes,
circuit complexity measures, and space-time, area-time and I/O-time
tradeoffs. Prerequisite: CSCI0510.

21

CSCI1600. Introduction to Embedded Real-Time Software
(Not Offered 08/09)

Comprehensive introduction to the design and implementation of
software for programmable embedded computing systems, those
enclosed in devices such as cellular phones, game consoles, and car
engines. Includes the overall embedded real-time software design and
development processes, as well as aspects of embedded hardware and
real-time, small-footprint operating systems. Major project
component. Prerequisite: CSCI0320. Enrollment limited to 30.

CSCI1610. Building High-Performance Servers (Not offered
08/09)

In-depth study of modern server design. Considers architectures for
building high-performance, robust, scalable and secure servers. We
consider all aspects of “mission-critical” servers. Topics include
threaded and non-blocking programming paradigms, high-
performance I/O (network and disk), secure programming
techniques, database access, performance profiling, security, and
redundancy. Teams will build significant projects. Prerequisite:
CSCI0320. Recommended: CSCI1670 and CSCI1680.

CSCI1660. Introduction to Computer Systems Security

This course teaches principles of computer security from an applied
viewpoint and provides hands-on experience on security threats and
countermeasures. Topics include code execution vulnerabilities
(buffer overflow, sandboxing, mobile code), malware (trojans,
viruses, and worms), access control (users, roles, policies),
cryptosystems (hashing, signatures, certificates), network security
(firewalls, TLS, intrusion detection, VPN), and human and social
issues (usability, social engineering, digital rights management).
Prerequisite: CSCI0160, CSCI0180, or CSCI0190.

CSCI1670. Operating Systems

The basic principles of operating systems. Part I: fundamental con-
cepts including multithreaded programming and concurrency, dy-
namic storage allocation and liberation, linkers and loaders, file
systems and virtual memory. Covers actual systems including So-
laris, Linux and Windows XP. Part II: operating-system support for
distributed systems, including computer communication protocols,
remote procedure call protocols, computer security, and distributed
file systems. Prerequisite: CSCI0320.

CSCI1680. Computer Networks

Covers the technologies supporting the Internet, from Ethernet and
Wi-Fi through the routing protocols that govern the flow of traffic

22

and the web technologies that are generating most of it. A major
concern is understanding the protocols used on the Internet: how they
work, their shortcomings, what the issues are, and what im-
provements are on the horizon. Prerequisite: CSCI0320 or consent of
instructor.

CSCI1690. Operating Systems Laboratory

Half-credit course intended to be taken with CSCI1670. Students
individually write a simple operating system in C. Reinforces the
concepts learned in CSCI1670 and provides valuable experience in
systems programming. Corequisite: CSCI1670.

CSCI1730. Introduction to Programming Languages

This course explores the principles of modern programming lan-
guages by implementing them. Examines linguistic features, espe-
cially control operators such as first-class functions, exceptions and
continuations. This leads to a study of data and their types, including
polymorphism, type inference and type soundness. The course con-
cludes by examining compiler and run-time system topics such as
continuation-passing style and garbage collection. Prerequisite:
CSCI0160, CSCI0180 or CSCI0190. Recommended: CSCI0220,
CSCI0310, and CSCI0510.

CSCI1760. Introduction to Multiprocessor Synchronization

This course examines the theory and practice of multiprocessor
synchronization. Subjects covered include multiprocessor
architecture, mutual exclusion, wait-free and lock-free
synchronization, spin locks, monitors, load balancing, concurrent
data structures, and transactional synchronization.

CSCI1780. Parallel and Distributed Computing (Not offered
08/09)

This course covers the practical aspects involved in designing,
writing, tuning and debugging software designed to run on parallel
and distributed systems. Topics might include client-server compu-
tation, threads, networks of workstations, message passing, shared
memory, partitioning strategies, load-balancing algorithms, remote
procedure call, and synchronization techniques. Prerequisites:
CSCI0220 and CSCI0320. Recommended: CSCI0510.

CSCI1810. Computational Molecular Biology

Processing molecular biology data (DNA, RNA, proteins) has be-
come central to biological research and a challenging area for com-
puter science research. Important objectives are molecular sequence
analysis, recognition of genes and regulatory elements, molecular

23

evolution, protein structure, comparative genomics. This course
models the underlying biology in the terms of computer science and
presents the most significant algorithms of molecular computational
biology. Prerequisites: CSCI0160, CSCI0180 or CSCI0190, and
CSCI0220, or consent of instructor.

CSCI1900. Software System Design

Students identify, design, and implement significant software
applications and learn and practice techniques of project
management, requirements, specification, analysis, design, coding,
documentation, testing, maintenance and communication.
Prerequisite: CSCI0320.

CSCI1950 Special Topics in Computer Science

Courses in various branches of computer science, including those
listed below. Specific courses may be added at the beginning of each
semester.

CSCI1950-C. Advanced Programming for Digital Art and
Literature

This workshop explores advanced tools and techniques for the
creation of innovative and expressive works of digital art. Lectures
address the application of best practices from the software-design
community to the context of digital media. In the first section of the
course, students exercise their skills with new techniques (integrated
development tools, agile and object-oriented programming, rapid
debugging and prototyping, etc.) on a range of “mini-projects,”
specifically the analysis, generation and digital presentation of
computationally augmented literary texts. Assignments include web-
data parsing, speech synthesis, context-free grammars, and statistical
generation techniques. During the second half of the course, students
focus on a larger work of their own design, participating in regular
critical reviews throughout the development cycle. Although
assignments focus on digital literature, wide-ranging media is
explored including sound, image, video, 3D, and installation.
Although there are no formal prerequisites, familiarity with at least
one modern programming language is highly recommended.

CSCI1950-L. Algorithmic Foundations of Computational
Biology (Not Offered 08/09)

This course is devoted to computational and statistical methods as
well as software tools for DNA, RNA, and protein sequence analysis.
The focus is on understanding the algorithmic and mathematical
foundations of the methods, the design of associated genomics tools,
as well as on their applications. The course is open to computer and

24

mathematical sciences students as well as biological and medical
students.

CSCI1950-Z. Computational Methods for Biology

This course will introduce algorithms from machine learning and
combinatorial optimization with a focus on their application to
biological data. Topics will include problems in phylogenetic
inference, population genetics, and biological interaction networks.

CSCI1970. Senior Seminar

Independent study in various branches of computer science,
supervised by the faculty.

APMA1710. Information Theory (Cross-listed course)

Information theory is the study of the fundamental limits of informa-
tion transmission and storage. This course offers a broad introduction
to information theory and its real-world applications: Entropy and
information, lossless data, compression, communication in the
presence of noise, capacity, channel coding; source-channel
separation; lossy data compression. Prerequisite: calculus, linear
algebra, APMA1650 or equivalent.

COGS1360. Introduction to Computational Linguistics
(Cross-listed course)

Investigates computational models of natural language comprehen-
sion and production. Focuses primarily on syntactic parsing (i.e.,
algorithms that determine the syntactic structure and the “logical
form” of a sentence) and the relationship between different linguistic
theories and algorithms that can implement them. Recommended
background: CSCI0510 or equivalent, and either COGS1110 or
COGS1310, or permission of the instructor.

COGS1680. Introduction to Machine Learning (Cross-listed
course)

A systematic introduction to machine learning, covering theoretical
as well as practical aspects of the use of statistical methods in artifi-
cial intelligence. Topics include linear models, decision trees, neural
networks, support vector machines, regularization theory, graphical
models and reinforcement learning. Application examples are taken
from areas such as information retrieval, natural language processing,
computer vision and computational biology. Prerequisites:
CSCI0160, CSCI0180 or CSCI0190, and CSCI0220. Familiarity with
probability and linear algebra are helpful.

25

Primarily for Graduates
CSCI2240. Interactive Computer Graphics

Important current topics in computer graphics. Course includes
reading and discussing current research papers, multiple assignments
and preliminary projects in which students implement recent papers,
and a demanding final integrative project done in small groups.
Prerequisites: CSCI1230 and CSCI0320.

CSCI2270. Topics in Database Management

In-depth treatment of advanced issues in database management sys-
tems. The focus is on current research. Topics vary from year to year
and may include distributed databases, query processing, mobile data
management, data warehousing, and web-based data management.
Prerequisite: CSCI1270.

CSCI2310. Human Factors and User Interface Design (Not
Offered 08/09)

Covers current research issues in the implementation, evaluation and
design of user interfaces, while also providing a basic background in
user-interface evaluation, programming, tools and techniques. A
possible topic is programming and designing device-independent
interfaces. Previous topics have included the development of
pervasive Internet-based interfaces and software visualization.
Prerequisite: consent of instructor.

CSCI2330. Programming Environments (Not offered 08/09)

This course covers programming tools, control and data integration,
software understanding and debugging, environments for parallel and
distributed programming, reverse engineering, configuration
management and version control and debugging. Emphasis on cur-
rent research areas. Prerequisite: consent of instructor.

CSCI2340. Software Engineering

Topics in design, specification, construction and validation of pro-
grams, focusing on tools to support each of these stages. We pay
special attention to concerns raised by the properties of modern
software systems including distribution, security, component-based
decomposition and implicit control. Prerequisite: CSCI1900 or other
upper-level systems coursework.

26

CSCI2370. Interdisciplinary Scientific Visualization (Not
Offered 08/09)

The solution of scientific problems using computer graphics and vi-
sualization. Working in small multidisciplinary groups, students
identify scientific problems, propose solutions involving computa-
tional modeling and visualization, design and implement the solu-
tions, apply them to the problems and evaluate their success.
Examples include: interactive software systems, immersive Cave
applications, new applications of existing visualization methods.
Prerequisites: all: programming experience; CS students: graphics
experience; others: problem ideas. Interested students should contact
the instructor.

CSCI2410. Statistical Models in Natural Language
Understanding (Not Offered 08/09)

This course covers various topics in computer understanding of nat-
ural language, primarily from a statistical point of view. Topics in-
clude: hidden Markov models, word-tagging models, probabilistic
context-free grammars, syntactic disambiguation, semantic word
clustering, word-sense disambiguation, machine translation and lex-
ical semantics. Prerequisite: CSCI1410.

CSCI2440. Game-Theoretic Artificial Intelligence (Not
Offered 08/09)

This course surveys recent developments in the emerging area of
game-theoretic artificial intelligence, which incorporates
fundamental principles of game theory into AI. Research in this area
is motivated by game-theoretic applications, such as auction design
and voting, as well as AI application areas, such as multi-agent
systems. Students will conduct theoretical, empirical, and
experimental investigations, asking fundamental questions such as:
can computational agents learn to play game-theoretic equilibria?
Prerequisite: Consent of the instructor.

CSCI2500. Topics in Advanced Algorithms

CSCI2500-A. Advanced Algorithms

Typically, an algorithm solves one problem, whereas a well-designed
data structure can help implement algorithms for a wide variety of
problems. We will study the design, analysis and implementation of
advanced data structures. Focus is on data structures that are fast,
both theoretically and empirically. Prerequisite: CSCI1570 or the
equivalent.

27

CSCI2500-B. Optimization Algorithms for Planar Graphs
(Not offered 08/09)

Planar graphs arise in applications such as road map navigation and
logistics, graph drawing, and image processing. We will study graph
algorithms and data structures that exploit planarity. Our focus will
be on recent research results in optimization. Prerequisite: CSCI1570
or the equivalent.

CSCI2510. Approximation Algorithms

Approximation algorithms deal with NP-hard combinatorial
optimization problems by efficiently constructing a suboptimal
solution with some specified quality guarantees. We study techniques
such as linear programming and semi-definite programming
relaxations, and apply them to problems such as facility location,
scheduling, bin packing, maximum satisfiability or vertex cover.
Prerequisite: CSCI1490 or CSCI1570.

CSCI2520. Computational Geometry (Not offered 08/09)

Algorithms and data structures for fundamental geometric problems
in two and three dimensions. Topics include point location, range
searching, convex hull, intersection, Voronoi diagrams and graph
drawing. Applications to computer graphics, circuit layout, informa-
tion visualization and computer-aided design are also discussed.
Prerequisite: CSCI1570 or written permission.

CSCI2531. Internet and Web Algorithms

This advanced graduate course/seminar focuses on the mathematical
foundations of algorithms for handling large amounts of data over
networks. We will read and discuss recent papers in information
retrieval, search engines, link analysis, probabilistic modeling of the
web and social networks, and more. Prerequisite: CSCI1550 and
CSCI1570, or equivalent courses.

CSCI2540. Advanced Probabilistic Methods in Computer
Science (Not offered 08/09)

Advanced topics in applications of probabilistic methods in design
and analysis of algorithms, in particular to randomized algorithms
and probabilistic analysis of algorithms. Topics include the Markov
chain Monte Carlo method, martingales, entropy as a measure for
information and randomness, and more. Prerequisite: CSCI1550.
Recommended but not required: CSCI1570.

28

CSCI2550. Parallel Computation: Models, Algorithms, Limits
(Not offered 08/09)

The theoretical foundations of parallel algorithmics. Analysis of the
most important models of parallel computation, such as directed
acyclic computation graphs, shared memory and networks, standard
data-exchange schemes (common address space and message-
passing). Algorithmic techniques with numerous examples are cast
mostly in the data-parallel framework. Finally, limitations to paral-
lelizability (P-completeness) are analyzed. Course content is likely to
change as technology evolves. Written permission needed for un-
dergraduates.

CSCI2560. Applied Theory of Computation (Not offered
08/09)

Advanced topics in theoretical computer science are chosen from the
following list: parallel computation, time and space complexity
classes, circuit complexity, I/O complexity, VLSI computation and
nanocomputing.

CSCI2570. Introduction to Nanocomputing

Nanoscale technologies employing materials whose smallest
dimension is on the order of a few nanometers are expected to
replace lithography in the design of chips. We introduce
computational nanotechnologies and explore problems presented by
their stochastic nature. Nanotechnologies based on the use of DNA
and semiconducting materials will be explored. Prerequisite:
CSCI0510.

CSCI2580. Solving Hard Problems in Combinatorial
Optimization: Theory and Systems (Not offered 08/09)

Addresses not only the theory of combinatorial optimization but also
how it is embodied in practical (industrial and logistical) systems.
Explores some of the issues and obstacles encountered in imple-
menting such systems. Emphasizes the wide variety of techniques
and methodologies available, including integer programming, local
search, constraint programming, and approximation algorithms.
Problems addressed may include: scheduling, coloring, traveling
salesman and resource allocation. Prerequisites: CSCI0320 and basic
knowledge of linear algebra.

CSCI2590. Advanced Topics in Cryptography (Not offered
08/09)

Seminar-style course on advanced topics in cryptography. Example
topics are zero-knowledge proofs, multi-party computation,

29

extractors in cryptography, universal composability, anonymous
credentials and e-cash, interplay of cryptography and game theory.
May be repeated for credit. Prerequisite: CSCI1510 or permission of
the instructor.

CSCI2730. Programming Language Theory (Not offered
08/09)

Theoretical models for the semantics of programming languages and
the verification of programs. Topics include operational semantics,
denotational semantics, type theory and static analyses. Prerequisite:
CSCI1730 or permission of the instructor.

CSCI2750. Topics in Parallel and Distributed Computing

CSCI2750 considers an advanced topic (to be determined) in
distributed computing. May be repeated for credit. Written
permission needed for undergraduates.

CSCI2950. Special Topics in Computer Science

Graduate courses in various branches of Computer Science, including
those listed below. Specific courses may be added at the beginning of
each semester.

CSCI2950-C. Topics in Computational Biology

This course will investigate active and emerging research areas in
computational biology. Topics include cancer genomics; genome
rearrangements and assembly; and protein and regulatory interaction
networks. The course will be a mixture of lectures and student
presentations of recent conference and journal papers.

CSCI2950-E. Stochastic Optimization (Not offered 08/09)

This advanced graduate course/seminar focuses on optimization
under uncertainty, or optimization problems where some of the con-
straints include random (stochastic) components. Most practical op-
timization problems are stochastic (subject to future market
conditions, weather, faults, etc.), and there has been substantial re-
search (both theoretical and experimental) in efficient solution for
such problems. We discuss some of the recent work in this area.

CSCI2950-G. Large-Scale Networked Systems

Explores widely distributed systems that take advantage of resources
throughout the Internet. These systems leverage their large size and
geographic diversity to provide bandwidth scalability, rapid
responses, fault-tolerance, high-availability and diverse data collec-
tion. Topics include overlay networks, peer-to-peer systems, content

30

distribution networks, distributed file systems and wide-scale
measurement systems.

CSCI2950-I. Computational Models of the Neocortex (Not
offered 08/09)

This course addresses the problem of modeling the perceptual
neocortex using probabilistic graphical models, including Bayesian
and Markov networks, and extensions to model time and change such
as hidden Markov models and dynamic Bayesian networks. The
emphasis is on problems of learning, inference and attention.
Sources include the literature in computational and cognitive
neuroscience, machine learning, and other fields that bear on how
biological and engineered systems make sense of the world.
Prerequisites: basic probability theory, algorithms and statistics.

CSCI2950-J. Cognition, Human-Computer Interaction and
Visual Analysis

In this graduate seminar, we will learn about models of human
cognition and perception and explore potential implications of the
models on how computers and humans can interact effectively when
performing scientific analyses. Participants will be responsible for
reading assigned materials, taking turns guiding discussions of the
readings, and preparing a final paper and presentation. It is
recommended that participants have some background in at least one
of these areas of study.

CSCI2950-L. Algorithmic Foundations of Computational
Biology II (Not offered in 08/09)

This course focuses on computational methods for genome-wide
disease association and the HapMap Project. The following topics
will be covered: basic models of population genetics, SNPs and
haplotypes analysis, linkage disequilibrium (LD), LD measures, LD
theory and genetic determinants of disease, empirical state of LD
patterns across populations, SNP challenges to genome assembly,
haplotype blocks, and block-free methods, haplotype phasing
(expectation maximization (EM) algorithms, Clark algorithm,
parsimony algorithms, Bayesian methods, perfect phylogeny
algorithms), proofs of NP-completeness for the haplotype phasing
problem (EM, parsimony, Clark-type parsimony), SNP selection and
the minimum informative subset, hypothesis testing and associations,
disease associations tests of significance, Sir R.A. Fisher and the
likelihood, genome-wide association studies for: multiple sclerosis,
cardiovascular disease, diabetes, and cancer, uses and misuses of
tests of statistical significance, sample size and power calculations,
haplotypes in association analysis, common disease common variant

31

hypothesis, coalescent theory and the ancestor recombination graph
problem.

CSCI2950-O. Topics in Brain-Computer Interfaces (Not
offered 08/09)

Introduces the mathematical and computational foundations of brain-
computer interfaces. Statistical learning, Bayesian inference,
dimensionality reduction, information theory and other topics are
presented in the context of brain interfaces based on neural implants.
Prerequisites: Knowledge of probability, statistics and linear algebra
(e.g., CSCI1550, APMA0410, APMA1650, or APMA1690).
Enrollment limited to 20 students.

CSCI2950-Q. Topics in Computer Vision

This course will cover current topics in computer vision with an
emphasis on motion estimation, learning methods and probabilistic
models. Readings will be from recent research papers. Computational
techniques may include expectation maximization, hidden Markov
models and belief propagation. Applications to tracking, recognition,
image enhancement and human motion analysis will be considered.

CSCI2950-T. Topics in Distributed Databases and Systems

Explores data and resource management issues that arise in the de-
sign, implementation and deployment of networked systems by
covering the state of the art in research and industry. Topics include
sensor networks and Internet-scale information systems and services.
Prerequisite: CSCI1380 or consent of the instructor.

CSCI2950-X. Topics in Programming Languages and
Systems (Not offered 08/09)

Examines contemporary research topics in software construction
from the perspectives of programming languages, software engi-
neering and computer-aided verification. The primary goals are to
understand which theory applies to which problems and to convert
that theory into tools. Prerequisite: CSCI1730 or written permission
of instructor.

CSCI2950-Y. Theorem Proving (Not offered 08/09)

This course explores computer-assisted theorem proving with the
Coq Proof Assistant. The course will teach students to formally
specify software and model mathematical theories. We will then
study techniques for mechanically proving theorems. Prerequisite:
CSCI1730 or permission of the instructor.

32

CSCI2950-Z. Robot Learning and Autonomy (Not offered
08/09)

This seminar course covers current research topics related to
perceiving and acting in the real world. These topics will be pursued
through independent reading, class discussion, and project
implementations. Papers covered will be drawn from robotics,
computer vision, animation, machine learning, and neuroscience.
Special emphasis will be given to developing autonomous control
from human performance. No prerequisites.

ENGN2911-T. 3D Photography and Geometry Processing
(Cross-listed course)

In 3D photography, cameras and lights are used to capture the shape
and appearance of 3D objects represented as graphical models for
applications such as computer animation, game development,
electronic commerce, heritage preservation, reverse engineering, and
virtual reality. This course covers 3D capture techniques and
systems, surface representations and data structures, as well as
methods to smooth, denoise, edit, compress, transmit, simplify, and
optimize very large polygonal models.

CSCI2980. Reading and Research

FACILITIES
The Department of Computer Science provides leading-edge
computing technology to all its faculty and students. We have over
500 desktop systems running Linux or Windows XP.
Most of these are custom systems configured and assembled by the
department’s technical staff. Components include AMD Athlon
Dual- or Quad-core processors with 2GB or 4GB of memory and
dual 19” or single 24” flat-panel monitors. These systems are
connected to the department’s 1Gb/s switched Ethernet network with
access to both Internet1 and Internet2 via the University’s fiber-optic
backbone. An 802.11g (54Mb/s) wireless network is accessible
throughout the department.
The department has two electronic classrooms. One, a banked
auditorium, holds seventy-three systems running Linux. This room
serves as the primary computer facility for undergraduate computer
science students. The other contains twenty-two systems running
Microsoft Windows. The layout of this space makes it an ideal room
for sections, seminars, and interactive learning. Six research labs
further enrich the environment with specialized hardware and
advanced workstations from a variety of vendors.

33

Desktop and research systems are supported by a data center with
fully redundant servers that offer a wide range of services. Central
file storage is provided by a clustered pair of Network Appliance
filers hosting of over 16TB of RAID-6 disks and an array of Linux
servers hosting nearly 9TB of RAID-5 disks. Computational servers
in a Sun Grid Engine cluster, all running Linux, include 65 dual-
processor, dual-core machines each with 8GB of memory, four quad-
processor, dual- or quad-core systems with 16GB to 32GB each, and
a number of others for a total of 91 machines with 332 cores in all.
Additional compute cycles are available to the user community
through a distributed processing system that allows batch jobs to
make use of spare processor cycles on departmental desktop systems.
The Department is located in the Thomas J. Watson Sr. Center for
Information Technology, a bright, open and inviting space. The
undergraduate workstation labs share the first floor with other
computer-equipped classrooms and clusters managed by the
University’s computer-support personnel.

RESEARCH AREAS
Artificial Intelligence

(Michael Black, Eugene Charniak, Amy Greenwald, Chad Jenkins,
Mark Johnson, Meinolf Sellmann, Pascal Van Hentenryck)
Artificial intelligence is concerned with elucidating the principles
behind intelligent behavior by creating artifacts (computer programs)
that embody such principles. AI researchers at Brown tend to see
probability and statistics as the primary mathematics in which these
principles are expressed, while recognizing that various cognitive
areas have quite different specifics. We also have a bias towards
seeing the specific problems in which we are interested (e.g., vision,
language, temporal reasoning, economic behavior, brain implants) as
special instances of machine learning — that is, we believe that in a
surprisingly wide variety of cases, the best way to get a program to
solve some problem is to have it learn to solve the problem. Thus, AI
researchers at Brown share not just a common set of problems but
also a substantial set of tools with which to approach them.

34

Combinatorial Optimization
(Philip Klein, Claire Mathieu, Benjamin Raphael, Meinolf Sellmann,
Eli Upfal, Pascal Van Hentenryck)
Combinatorial optimization involves finding the best (e.g. lowest
cost, most valuable, smallest, largest) among a huge but finite set of
candidates. Examples include job-shop scheduling and the traveling
salesman problem. Research at Brown focuses on three areas:

Solution methods for traditional optimization problems, including
methods for finding exact solutions (e.g. constraint and integer
programming, dynamic programming), approximation
algorithms that are guaranteed to find solutions nearly as good
as the best, and heuristic methods that find good solutions for
most but not all possible instances.

Stochastic and on-line optimization problems in which the data are
uncertain and/or not known a priori.

Modeling tools that streamline the development of solution
methods.

Computational Biology
(Sorin Istrail, David Laidlaw, Franco Preparata, Benjamin Raphael,
Eli Upfal, Pascal Van Hentenryck)
Computational biology is a vigorous, emerging discipline at the in-
terface of computer science and life science and is at the core of bio-
informatics, which is concerned with the acquisition, analysis, and
storage of biological information. Computational biology is the de-
velopment of algorithms and computer programs central to this ef-
fort, with special emphasis on nucleic acid and protein sequence
applications. Subjects of active research include DNA mapping, se-
quence alignment, data mining in biological databases, phylogeny,
spatial structures, and functional genomics and proteomics.
Research towards the discovery of “complexity laws” governing
systems in biology, physics, chemistry and economics provides a
new way of thinking about the behavior of enormous systems and
their interacting units. Computer science provides methods for the
identification of the computational complexity roots of qualitatively
similar “complex systems phenomena” occurring in physics, biology,
chemistry and economics.

Computational Geometry
(Franco Preparata, Roberto Tamassia)

Theoretical research in this area addresses data structures and algo-
rithms for fundamental geometric problems, robust geometric prim-

35

itives, computational metrology and tolerancing, computational
topology, geometric graph theory and graph-drawing algorithms.
Experimental work includes a system for matching trajectories of
objects moving in space and a method for the estimation of the
location of sensor nodes using power measurements of the signals
received from beacon nodes.

Computational Neuroscience
(Michael Black, Tom Dean, Chad Jenkins, David Laidlaw)
As part of a larger interdisciplinary brain sciences initiative at
Brown, neuroinformatics combines neuroscience and informatics in
order to advance our understanding of how the brain works. Methods
from various branches of computer science are used to visualize,
model, and simulate neural processes. Areas of particular interests
include human-computer interfaces, computational and statistical
models of sensory processing and motor control, adaptivity and
learning in the brain, and the use of computer graphics to enhance
brain-imaging technology.

Computer Graphics
(John Hughes, Chad Jenkins, David Laidlaw, Barbara Meier,
Gabriel Taubin, Andy van Dam)
The long-term research goal of the Brown University Graphics
Group is to develop human-centered, powerful, and interactive 2D
and 3D graphics tools for modeling, scientific visualization, and
education, as well as to study the mathematical foundations of
computer graphics.
The Visualization Research Group is part of the Brown University
Graphics Group. An interdisciplinary team of people from a number
of Brown departments develops robust and effective computer
science and visualization tools and techniques for solving a range of
problems and phenomena from science as well as the arts and
humanities. Collaborative work with colleagues in these areas guides
the research and provides a mechanism for evaluating the usefulness
and robustness of results.

Computer Vision
(Michael Black, John Hughes, Chad Jenkins, Erik Sudderth, Gabriel
Taubin)
Problems in vision reside at the interface of the physical world,
computational machines, and the human brain. Our computational
models of the physical world are, by necessity, incomplete, which
means that when we observe or act upon the world we do so with
inaccurate, uncertain, and ambiguous information.

36

Research on vision at Brown focuses on this problem of forming and
testing hypotheses about a world of which we are uncertain, often
from data that are inaccurate, noisy, or inconsistent. Our research
includes video motion analysis, tracking, event recognition, object
detection and recognition, segmentation and visual scene analysis,
human motion understanding, and applications of vision in computer
graphics. Our work spans many disciplines and involves
collaborations with researchers in engineering, neuroscience,
cognitive and linguistic sciences, mathematics, applied mathematics,
and biomechanics. Our facilities include multiple Vicon motion-
capture systems as well as multi-camera video capture systems.

Cryptography
(Anna Lysyanskaya, Roberto Tamassia)
Cryptography is about solving impossible problems. For example,
consider the problem of accurate, verifiable and private electronic
voting. At first glance, it seems that it is impossible to have a
protocol for voting that would be guaranteed to tally the votes
correctly, do so in public so everyone could see it was tallied
correctly, and yet, still, somehow hide all information about how
each individual cast his or her vote. Yet, it turns out that it is
possible, and what’s more, there are practical and provably secure
algorithms for it, and much, much more!
The cryptography group at Brown successfully works on similarly
impossible problems. For example, we work on practical and
provably secure solutions to the problem of authentication without
identification, where one can prove that one is an authorized user
without revealing one’s identity. We are developing extremely
efficient algorithms for authenticating high volumes of data in non-
trusted distributed environments. While firmly rooted in theory, our
research is intended to be useful in practice, and we collaborate
extensively with both theoreticians and systems-builders.

Database Systems
(Ugur Cetintemel, Stanley Zdonik)
Historically, we have been leaders in object-oriented database
systems and advanced query languages and query processing. We
have a strong interest in data management for networked systems,
including the intelligent use of resources for broadcast and
dissemination-based systems. We focus on the emerging area of data-
stream management systems (DSMS) with an emphasis on real-time
processing, quality of service maintenance, and approximate
answers. Our work also involves developing data-centric abstractions

37

and systems for high-level tasking of wireless sensor-actuator
networks.
We are interested in scaling database systems and data warehouses
through the use of massively parallel grids and virtual environments
or clouds. We have also been working on various automatic physical
database design algorithms that can make effective use of these
complex new environments. An important application for this kind
of service is scientific data management, and we are developing
special purpose architectures for this area. Scientific data is by its
nature naturally uncertain and query processing techniques must be
able to deal with this.

Design and Analysis of Algorithms
(Sorin Istrail, Philip Klein, Claire Mathieu, Franco Preparata,
Benjamin Raphael, John Savage, Meinolf Sellmann, Roberto
Tamassia, Eli Upfal)
We study applications of probability theory to the design and
analysis of algorithms. Randomness comes up in two aspects of the
study of algorithms: randomized algorithms and probabilistic
analysis of algorithms. In randomized algorithms, we are particularly
interested in algorithms for communication and distributed
applications, as well as online combinatorial problems. In
probabilistic analysis, our work focuses on the long-term steady-state
performance of dynamic processes.
We also study combinatorial algorithms, which treat computations on
finite, discrete mathematical structures. Topics include searching,
sorting, and enumeration, data structures, graph algorithms, external-
memory algorithms, combinatorial optimization, approximation
algorithms for NP-hard problems, online algorithms, and algorithm
engineering.

Educational Technology
(Shriram Krishnamurthi, Roberto Tamassia, Andy van Dam)
The department has a strong record of accomplishment of research in
interactive educational technology and tools. We continue to work on
educational applets for teaching concepts in computer science.
Furthermore, most of the applications we do in our research in pen-
centric and multi-touch computing have strong educational
applications. We have developed a secure laboratory environment
allowing the students of our computer security course to safely
experiment with virus propagation and other attacks to computer
networks. In addition, we are ongoing participants in the design of
DrScheme, one of the leading teaching-motivated and student-
friendly programming environments.

38

Geometric Shape Representation and
Interfaces for Modeling

(John Hughes, Gabriel Taubin)
We develop interfaces for naturally creating and editing 3D shapes
and the associated shape representations that enable such inter-
faces. These interfaces include sketch-based interfaces for both
standard geometric models (cuboids, generalized cylinders, etc.)
and an interface for creating a smooth shape from a drawing of its
visible contour. The shape representations include various manifold
representations, mesh approximations to Laplacian representations,
and other approaches drawn from differential geometry and
topology.

Intelligent Agents
(Amy Greenwald)
The Intelligent Agents group at Brown is designing and
implementing systems that automate decision-theoretic and game-
theoretic reasoning. One of our key objectives is to develop faithful
representations of user preferences, thereby facilitating human-
computer interaction. Given a single user’s preferences, we are
applying statistical techniques to the design of agent-based
information retrieval systems that automatically annotate, classify,
filter, retrieve, and deliver web content. Given multiple users’
preferences, we are implementing intelligent agents that learn to
reason strategically in e-commerce settings, such as Internet auctions
and other dynamic pricing games.

Machine Learning
(Michael Black, Eugene Charniak,, Amy Greenwald, Chad Jenkins,
Mark Johnson, Erik Sudderth, Eli Upfal)
It is difficult to separate machine learning from artificial intelligence
at Brown. Most of the AI faculty utilize statistical machine learning
techniques in their work whether they focus on machine vision, game
theory, robotics, or computational linguistics. Hidden Markov
models, stochastic context-free grammars, graphical models
(Bayesian networks and Markov random fields), and Markov
decision processes are common mathematical tools used in
developing new algorithms and applications. Related research topics
include the design and analysis of variational inference algorithms,
Markov chain Monte Carlo (MCMC) methods, discriminative
learning, and nonparametric Bayesian statistics. There are active
reading groups and a good deal of collaboration among faculty in
computer science and with colleagues in the Departments of Applied

39

Math, Cognitive and Linguistic Sciences, Engineering, and
Neuroscience.

Mobile and Ubiquitous Computing
(Ugur Cetintemel, Rodrigo Fonseca, John Jannotti, Stanley Zdonik)
Recent years have witnessed a dramatic trend towards ubiquitous
computing, whereby very large numbers of casually accessible, mo-
bile or embedded computing devices are connected to an increasingly
ubiquitous networking infrastructure. In this context, our research
explores a host of data and resource management challenges in newly
emerging networked systems, such as sensor networks, mobile ad
hoc networks, and Internet-scale information systems. Specific
projects include profile-based data management; power profiling and
optimization for embedded networking devices; broadcast disks;
data recharging; mobile computers (with ad hoc networking) as note-
taking, annotation, and collaboration tools; decentralized replication
for mobile and weakly connected environments; and adaptive data
dissemination and routing in wireless sensor networks.
Another research area related to ubiquitous computing is the area of
visual sensor networks (VSNs), which are composed of very large
numbers of audio/visual sensors--smart cameras--distributed over a
geographic area. The smart cameras coordinate their sensing,
communication, and computation in order to acquire relevant
information about their environment and to collaborate on high-level
tasks. Applications of wired and wireless VSNs include surveillance
and security in large, public places, human-computer interaction, and
smart living environments. Problems we are addressing in this area
include: implementation of VSNs using low-cost off-the-shelf
components; the design and fabrication of smart cameras with
system-on-chip (SoC) embedded processors, reconfigurable
hardware, and open operating system software; the design of
optimized low-power real-time data-processing algorithms at the
hardware level; software support for low-level image processing and
networking operations at the embedded operating system level,
including new image-based routing protocols; new collaborative real-
time audio/visual processing algorithms; and the development of
software models and supporting infrastructure to let users specify
how sensor data should be processed, while letting our intelligent
algorithms optimize where such processing occurs.

Nanocomputing
(John Savage)
Nanocomputing, the use of nanometer-scale technologies for com-
putation, presents important new algorithmic challenges. Self-as-

40

sembly will replace traditional photolithography as a means to place
circuit designs on chips. As a result, nanochips will have highly
regular macrostructures but exhibit randomness at the lowest level.
Among the new challenges are a) discovery of methods to assemble
and control nanoscale devices, b) development of architectures and
algorithms to make the best use of the I/O limitations that arise due to
the disparity in wire sizes at the nano and microlevels, c) the design
of new algorithms for the efficient use of highly structured, faulty
nanoscale structures, and d) methods for containing the high fault
rates associated with these very small devices.

Natural Language Processing
(Eugene Charniak, Mark Johnson)
Computational linguistics is the study of computational processes
that can comprehend, produce and/or acquire natural language. At
Brown, we view computational linguistics as lying at the intersection
of artificial intelligence and linguistics, and most of our work relies
on statistical and machine-learning techniques that are very similar to
those used in other areas of AI at Brown. More specifically, we are
interested in developing sophisticated statistical models that describe
the hidden linguistic (and non-linguistic!) dependencies in sentences
and larger units. We use various models of this kind for parsing (i.e.,
identifying the syntactic structure of a sentence), speech recognition
(especially modeling disfluencies in spontaneous speech), machine
translation, question-answering and document retrieval.

Operating Systems and Distributed Systems
(Ugur Cetintemel, Tom Doeppner, Rodrigo Fonseca, Maurice
Herlihy, John Jannotti, Stanley Zdonik)
Brown has a long history of research in operating systems and dis-
tributed systems, ranging from early work in RPC protocols in the
early ’70s to early work in multi-threaded programming in the ’80s
and a fair number of research activities today that focus on many
different areas. Within distributed systems, we are working on de-
centralized data replication and caching and adaptive distributed re-
source management. We are interested in technologies that apply
data-management techniques to distributed environments, such as
distributed caching, data broadcast, and automated data freshening.
We are developing scalable data management algorithms for
massively parallel, shared-nothing grids. We also address data
management in sensor networks and in data dissemination systems.
We are pursuing techniques for understanding the behavior of
distributed systems through analysis and visualization, as well as
developing environments to support the construction and
maintenance of distributed systems. At the more fundamental level,

41

we are working in the foundations and practice of wait-free and lock-
free synchronization algorithms, in the context of both shared-
memory multiprocessors and distributed systems. Finally, in
operating systems, we continue our work in multithreaded
programming with particular emphasis on performance of shared-
memory parallel systems.
In Internet computing we work on such topics as data prefetching,
proxy cache management, and resource discovery. We are also
working on the use of profiles in performing automatic data
organization and in support of adaptive content-management
networks. We are developing languages and tools to support the
development, evolution, and understanding of large-scale Internet-
based programs, including the semantics and verification of Web
services.
Finally, in operating systems we continue our work in multi-threaded
programming with particular emphasis on performance of shared-
memory parallel systems.

Parallel Computing
(Maurice Herlihy, John Jannotti, Franco Preparata, John Savage,
Eli Upfal, Pascal Van Hentenryck)
Research in parallel computation deals with models of execution in
which sets of independent operations can be carried out concurrently.
Therefore, it is concerned with formalization of models of
parallelism, elucidation of problem parallelism, design of parallel
algorithms, space-time tradeoffs, computing system layout, and in-
vestigation of the limits to parallelizability.

Programming Languages
(Shriram Krishnamurthi, Pascal Van Hentenryck)
Programming language research at Brown covers the design, imple-
mentation, and analysis of programming languages. We focus on
three main areas. First, we study and construct different notions of
modularity, with a strong nod to the principles derived from software
engineering concerns. Second, we build highly declarative
programming languages centered around constraints, with special
emphasis on combinatorial and numerical constraints. Finally, we are
interested in the principles and problems underlying popular
programming methodologies such as scripting.

Robotics
(Tom Dean, Chad Jenkins)
Autonomous robotics pertains to the development of computational
and engineering methods towards realizing physically embodied

42

systems whose functionality is of utility and usability across society.
Functional robot behavior, however, must overcome many sources of
uncertainty in the physical world associated with computational
perception, decision making, and motor control. Further, robots will
also need to coordinate and adapt their behavior to the needs of
human users as well as other robots.
The Brown Robotics Group focuses on enabling robots to be
collaborators in the pursuit of human activities through research into
robot learning and human-robot interaction. Current research
addresses robot learning from demonstration, physical manipulation
of objects, multi-robot coordination, multi-modal interfaces for
human-robot communication, and predictive modeling of motion
dynamics. Robotics is a highly interdisciplinary field; Brown
Robotics actively engages in various synergistic efforts in
engineering, cognitive science, biomechanics, and neuroscience, such
as toward neural control of prostheses.

Scientific Visualization and
Modeling

(David Laidlaw, Andy van Dam)
Driven by scientific applications, research in this area centers around
toolsmithing--creating, building, and evaluating computational and
visualization tools for science. Problem areas include visualization of
time-varying 3D vector- and tensor-valued data, information
visualization, image processing, classification and segmentation,
biological modeling, load balancing in a distributed environment, and
distributed finite element mesh refinement. To attack these problems,
we develop new user-interface environments and metaphors, look for
inspiration from art to create new visual representations, and develop
new numerical approaches to model complicated scientific data and
physical phenomena computationally and visually. We investigate a
range of working environments best suited to a collaborator’s
visualization challenges, from conventional desktop systems to
Brown’s fully immersive, four-wall Cave. Active collaborations
with systems biologists, fluids researchers, planetary geoscientists,
neurosurgeons, developmental biologists, medical imaging
researchers, orthopaedic surgeons, bioengineers, perceptual
psychologists, and evolutionary biologists help to motivate, guide,
and evaluate the research. The many application areas help ensure
that the computational and visualization tools are broadly useful.
Research in this area is coupled with other areas in the department, in
particular Computer Graphics, Computational Neuroscience,
Computational Biology, and User Interfaces and Virtual Reality.

43

Security
(Tom Doeppner, Shriram Krishnamurthi, Anna Lysyanskaya, Steve
Reiss, Roberto Tamassia)
Today’s computer systems are vulnerable in myriads of ways. This
is, perhaps, a consequence of the fact that they were not designed
with the worst-case scenario in mind, and the problem of protecting
them against attack came as an afterthought. How do we protect
existing systems from attacks? How do we make sure that future
systems are not vulnerable?
We develop practical tools for such tasks as combating denial-of-
service attacks (via IP-traceback), checking the integrity of
outsourced files and databases, authenticating aggregated data, and
visualizing file permissions . We also tackle the policies that dictate
the security of systems. We devise theories and build tools for the
analysis of industrial-scale access-control policies and their
interactions with programs. Using state-of-the-art cryptography, we
develop systems that ensure fairness and accountability.

Software Engineering
(Shriram Krishnamurthi, Steve Reiss)
Software engineering is the study of effective ways to design, imple-
ment, validate and maintain extremely large software systems. Our
research stresses the construction of software tools, especially in the
context of programming environments. Our work currently focuses
on the consistent evolution of software, the bridge between the
structure and behavior of software systems, and on combining tools
in an integrated environment. We are also part of the multi-university
PLT Scheme project, which produces the DrScheme programming
environment.

Theory of Computation
(Maurice Herlihy, Sorin Istrail, Philip Klein, Shriram Krishnamurthi,
Anna Lysyanskaya, John Savage, Meinolf Sellmann, Roberto
Tamassia, Eli Upfal)
Researchers in theoretical computer science at Brown develop serial,
parallel, and distributed models of computation, establish fun-
damental limits on computation, identify problems that are
computationally feasible and infeasible, not only classify problems
by their use of computational resources, such as space, time, number
of I/O operations, and chip area, but also examine tradeoffs between
resources, study the expressive power of programming languages,
explore the nature of proof, develop the foundations for reliable and

44

secure communications, and develop verifiable methods for the
specification of tasks.

User Interfaces and Virtual Reality
(Michael Black, John Hughes, David Laidlaw, Steve Reiss, Andy van
Dam)
Brown is a leader in the research of Post-WIMP (Windows, Icons,
Menus, Pointing) user interfaces, including multi-modal interfaces.
Brown’s research spans a broad range of form factors, including
traditional desktops, large-format stereo displays, pen and (multi-)
touch systems, and fully immersive virtual reality environments. We
develop new interaction metaphors and techniques, evaluate their
effectiveness, and compare the different types of environments to
develop an understanding of their strengths and weaknesses. In
collaboration with the Rhode Island School of Design, we study how
the design process can complement the development of user
interfaces. Many scientific domains involve analysis and
visualization of 3D and higher-dimensional data; collaboration with
scientists in those domains drives our research and helps evaluate it.
Similarly, we are advancing pen-centric computing by investigating
how to make tasks naturally suited to pen or other gestural input as
fluid on a computer as interacting with pencil and paper. Beyond
productivity increases, we hope to discover new workflows and make
computational assistance seamless for tasks like working with 2D
notations (e.g., math, chemistry, music notation, and diagrams), note
taking, and storyboarding. Facilities include a Tablet PC laboratory,
several “fishtank” virtual-reality setups, a tiled (3x3) Powerwall, and
one of the few Cave virtual environments in the northeast. This
research area is closely coupled with Scientific Visualization and
Modeling. In collaboration with scientists in the Brain Sciences
Program, we are building a new generation of direct brain-machine
interfaces using implanted electrode arrays to control computer
displays and robotic devices.

Verification and Reliable Systems
(Shriram Krishnamurthi, Steve Reiss, Pascal Van Hentenryck)
Our main focus is on the modular verification of systems. We place
particular emphasis on software systems, addressing the problems
peculiar to them and exploiting the advantages they confer. Our ver-
ification work is strongly informed by our expertise in programming
languages and software engineering. A second focus is the design
and implementation of reliable and validated numerical algorithms,
including nonlinear and differential equations, using interval rea-
soning. A third emphasis is on creating support for non-traditional

45

programming languages such as access-control policies and
spreadsheets.

THE UNIVERSITY
Brown University is the seventh oldest institution of higher learning
in the U.S. It was founded in 1764 as Rhode Island College in
Warren, RI, and moved in 1770 to its present location on College
Hill overlooking the capital city of Providence. In 1804, in recogni-
tion of a gift, it took its present name of Brown University. In 1971
Pembroke College, the women’s college associated with Brown,
merged with the University.
Around the middle of the past century, Brown began to speak of it-
self as a university college, a phrase meant to suggest that the school
has retained something of the intimacy of a college even while it has
become a major center for research and advanced studies. The
present University consists of the undergraduate College, the Grad-
uate School, and the School of Medicine.

See www.brown.edu.

THE AREA
Brown University is located in an historic residential area of Provi-
dence, a dynamic medium-sized city with a handsomely renovated
riverfront, one hour from Boston and three hours from New York.
The University and the nearby Rhode Island School of Design
regularly present a broad collection of seminars, colloquia and other
events. Many cultural resources are available, including concerts,
theater, museums, art galleries and WaterFire, an enchanting
multimedia fire installation symbolic of the city’s renaissance.
Recreational activities are numerous and include excellent University
athletic facilities, both indoor and outdoor, the East Bay Bike Path,
Rhode Island’s many superb beaches, and New England ski areas.
Miller Residence Hall, on the Pembroke Campus, offers dormitory
accommodations for graduate students, and many rooms and
apartments are available within walking distance of the University.
See www.providenceri.com.

GRADUATE PROGRAM APPLICATION
Graduate School information can be obtained at
gradschool.brown.edu. If you wish to apply for admission, either
use the online application at gradschool.brown.edu/go/admission.

http://www.brown.edu/
http://www.providenceri.com/
http://gradschool.brown.edu/
http://gradschool.brown.edu/go/admission

46

The deadline for receipt of Ph.D. applications (including GRE scores
and letters of recommendation) for the fall term is January 2. Ap-
plications may be considered after this date, but may also be at a
disadvantage in the awarding of financial support. The Sc.M.
program has rolling admissions, which means applications are
accepted until the available spots are filled. The deadline for receipt
of Sc.M. applications for fall admission is July 15 and for spring
admission is December 11. Because space is limited and admission
is competitive, applicants are encouraged to apply as early as
possible.
The department requires both verbal and quantitative Graduate
Record Examinations for Ph.D. applications and recommends, but
does not require, the Computer Science GRE subject examination.
Applicants are advised that the subject test provides an additional
objective form of evaluation and that this information is often helpful
in demonstrating an applicant’s abilities.
Applicants are urged to express clearly their area or areas of ac-
ademic and research interest; applicants who do not provide such in-
formation are difficult to evaluate for admission.
A number of University Fellowships, Teaching Assistantships and
Research Assistantships are available for Ph.D. candidates. These
positions cover the nine-month academic year and include a
combination of tuition remission and stipend. Assistantships require a
maximum of 20 hours/week teaching or research. In addition, some
Research Assistantships cover the summer months.

FOREIGN STUDENTS
Information for foreign students regarding visas, financial policies,
etc. is available from the Graduate School. Foreign students whose
native language is not English cannot be admitted until the results of
the TOEFL examination have been received.

FURTHER INFORMATION
Please access our website for detailed course descriptions, specific
financial awards for which you may qualify, and graduate application
information: www.cs.brown.edu/grad/applications. The graduate
FAQs are updated regularly and are the best source of information.

http://www.cs.brown.edu/grad/applications/

47

Front cover: photo of the Thomas J. Watson, Sr., Center for
Information Technology, home to the Department of Computer
Science, by Amy Tarbox.
Back cover: What's happening inside your Ajax Web application?
Arjun Guha and Shriram Krishnamurthi are studying it using
program analysis. The background represents the control-flow on
the client, while the foreground is what the server sees -- all
generated automatically.

	CS.brochure.cover.final.pdf
	dept.brochure.0809.final.pdf
	Computer Science A.B.
	Computer Science Sc.B.
	Computer Science–Economics
	Computer Science–Economics A.B.
	Computer Science–Economics Sc.B.
	Applied Mathematics–Computer Science Sc.B.
	Computational Biology Sc.B.
	Mathematics–Computer Science Sc.B.
	Independent Study
	Earning Honors
	Master of Science
	Concurrent ScB and ScM in
	 Computational Biology
	Doctor of Philosophy
	Primarily for Undergraduates
	CSCI0020. Concepts and Challenges of Computer Science
	CSCI0040. Introduction to Scientific Computing and Problem Solving
	CSCI0090-A. Building a Web Application (First-year seminar) (Not offered 08/09)
	CSCI0150. Introduction to Object-Oriented Programming and Computer Science
	CSCI0160. Introduction to Algorithms and Data Structures
	CSCI0170. Computer Science: An Integrated Introduction
	CSCI0180. Computer Science: An Integrated Introduction
	CSCI0190. Programming with Data Structures and Algorithms
	CSCI0220. Introduction to Discrete Structures and Probability
	CSCI0240. Visual Thinking/Visual Computing (Not offered 08/09)
	CSCI0310. Introduction to Computer Systems
	CSCI0320. Introduction to Software Engineering
	CSCI0510. Models of Computation

	CSCI0530. Directions: The Matrix in Computer Science
	For Undergraduates and Graduates
	CSCI1230. Introduction to Computer Graphics
	CSCI1250. Introduction to Computer Animation
	CSCI1260. Introductory Compiler Construction (Not offered 08/09)
	CSCI1270. Database Management Systems
	CSCI1280. Intermediate 3D Computer Animation
	CSCI1340. Innovating Game Development (Not Offered 08/09)
	CSCI1370. Virtual Reality Design for Science
	CSCI1380. Distributed Computer Systems
	CSCI1410. Introduction to Artificial Intelligence
	CSCI1430. Introduction to Computer Vision
	CSCI1480. Building Intelligent Robots
	CSCI1490. Introduction to Combinatorial Optimization
	CSCI1510. Introduction to Cryptography and Computer Security
	CSCI1550. Probabilistic Methods in Computer Science
	CSCI1570. Design and Analysis of Algorithms
	CSCI1590. Introduction to Computational Complexity (Not Offered 08/09)
	CSCI1600. Introduction to Embedded Real-Time Software (Not Offered 08/09)
	CSCI1610. Building High-Performance Servers (Not offered 08/09)
	CSCI1660. Introduction to Computer Systems Security
	CSCI1670. Operating Systems
	CSCI1680. Computer Networks
	CSCI1690. Operating Systems Laboratory
	CSCI1730. Introduction to Programming Languages
	CSCI1760. Introduction to Multiprocessor Synchronization
	CSCI1780. Parallel and Distributed Computing (Not of fered 08/09)
	CSCI1810. Computational Molecular Biology
	CSCI1900. Software System Design
	CSCI1950 Special Topics in Computer Science
	CSCI1950-C. Advanced Programming for Digital Art and Literature
	CSCI1950-L. Algorithmic Foundations of Computational Biology (Not Offered 08/09)
	CSCI1950-Z. Computational Methods for Biology
	CSCI1970. Senior Seminar
	APMA1710. Information Theory (Cross-listed course)
	COGS1360. Introduction to Computational Linguistics (Cross-listed course)
	COGS1680. Introduction to Machine Learning (Cross-listed course)

	Primarily for Graduates
	CSCI2240. Interactive Computer Graphics
	CSCI2270. Topics in Database Management
	CSCI2310. Human Factors and User Interface Design (Not Offered 08/09)
	CSCI2330. Programming Environments (Not of fered 08/09)
	CSCI2340. Software Engineering
	CSCI2370. Interdisciplinary Scientific Visualization (Not Offered 08/09)
	CSCI2410. Statistical Models in Natural Language Understanding (Not Offered 08/09)
	CSCI2440. Game-Theoretic Artificial Intelligence (Not Offered 08/09)
	CSCI2500. Topics in Advanced Algorithms
	CSCI2500-A. Advanced Algorithms
	CSCI2500-B. Optimization Algorithms for Planar Graphs (Not offered 08/09)
	CSCI2510. Approximation Algorithms
	CSCI2520. Computational Geometry (Not offered 08/09)
	CSCI2531. Internet and Web Algorithms
	CSCI2540. Advanced Probabilistic Methods in Computer Science (Not offered 08/09)
	CSCI2550. Parallel Computation: Models, Algorithms, Limits (Not offered 08/09)
	CSCI2560. Applied Theory of Computation (Not offered 08/09)
	CSCI2570. Introduction to Nanocomputing
	CSCI2580. Solving Hard Problems in Combinatorial Optimization: Theory and Systems (Not offered 08/09)
	CSCI2590. Advanced Topics in Cryptography (Not offered 08/09)
	CSCI2730. Programming Language Theory (Not offered 08/09)
	CSCI2750. Topics in Parallel and Distributed Computing
	CSCI2950. Special Topics in Computer Science
	CSCI2950-C. Topics in Computational Biology
	CSCI2950-E. Stochastic Optimization (Not offered 08/09)
	CSCI2950-G. Large-Scale Networked Systems
	CSCI2950-I. Computational Models of the Neocortex (Not offered 08/09)
	CSCI2950-J. Cognition, Human-Computer Interaction and Visual Analysis
	CSCI2950-L. Algorithmic Foundations of Computational Biology II (Not offered in 08/09)
	CSCI2950-O. Topics in Brain-Computer Interfaces (Not offered 08/09)
	CSCI2950-Q. Topics in Computer Vision
	CSCI2950-T. Topics in Distributed Databases and Systems
	CSCI2950-X. Topics in Programming Languages and Systems (Not offered 08/09)
	CSCI2950-Y. Theorem Proving (Not offered 08/09)
	CSCI2950-Z. Robot Learning and Autonomy (Not offered 08/09)
	ENGN2911-T. 3D Photography and Geometry Processing (Cross-listed course)
	CSCI2980. Reading and Research

	Artificial Intelligence
	Combinatorial Optimization
	Computational Biology
	Computational Geometry
	Computational Neuroscience
	Computer Graphics
	Computer Vision
	Cryptography
	Database Systems
	Design and Analysis of Algorithms
	Educational Technology
	Geometric Shape Representation and Interfaces for Modeling
	Intelligent Agents
	Machine Learning
	Mobile and Ubiquitous Computing
	Nanocomputing
	Natural Language Processing
	Operating Systems and Distributed Systems
	Parallel Computing
	Programming Languages
	Robotics
	Scientific Visualization and Modeling
	Security
	Software Engineering
	Theory of Computation
	User Interfaces and Virtual Reality
	Verification and Reliable Systems

